Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers describe first functioning 'lipidome' of mouse macrophage

02.12.2010
For the first time, scientists have described not only the identities and quantities of fat species in a living mammalian cell – in this case, a mouse macrophage or white blood cell – but they also report how these lipids react and change over time to a bacterial stimulus triggering the cell's immune response.

Writing in the December 17 issue of the Journal of Biological Chemistry, lead author Edward A. Dennis, PhD, distinguished professor of pharmacology, chemistry and biochemistry at the University of California San Diego School of Medicine, said the work culminates more than seven years of effort by scientists in LIPID MAPS, a national consortium of 12 research laboratories at nine "core" universities, medical research institutes and life sciences companies collaborating to study the structure and function of lipids. UC San Diego serves as lead institution and information clearinghouse. Dennis is principal investigator.

"This paper is the essence of what we originally proposed," said Dennis. "This is our big, initial study, though we've published many other papers and have more in the pipeline." All nine core facilities in LIPID MAPS participated in the study.

Until relatively recently, lipid research has not received the same degree of attention as, say, genes or proteins. But fats are indisputably crucial to cell operations and overall health. Lipids represent major structural and metabolic components of cells and perform essential functions, such as membrane construction, energy production and intracellular communications.

"They're also a key in virtually all diseases," said Dennis. "Any condition involving inflammation involves lipids. It's hard to think of a disease, including cancer, in which lipids don't play some role."

Likewise for the subject of the research: the mouse macrophage.

"It would have been simpler to do this with yeast or bacteria," said Dennis, "but the macrophage is found in every kind of mammalian tissue (under different names). It's a major player in the immune system."

Moreover, scientists were able to study natural macrophages obtained from a live, well-established mouse model, rather than relying upon cultured cells. The model could also be genetically modified to test various hypotheses.

Previous studies have produced increasingly expansive and detailed "parts lists" of lipids. In October, for example, Dennis and colleagues published a paper that identified and quantified almost 600 distinct fat species circulating in human blood.

The new paper goes further. It chronicles the activity of more than 400 fat species in a macrophage after exposure to an endotoxin – a molecule found on the surfaces of bacteria that is recognized by macrophages and which triggers the cell's infection-fighting functions.

Each hour for 24 consecutive hours, scientists measured minuscule increases or decreases of targeted lipids, an indication of greater or lesser activity.

"The result is a temporal model of infection at the level of a single cell," said Dennis.

Similar experiments were conducted with macrophages exposed to a statin (a popular class of cholesterol-lowering drugs) and with macrophages simultaneously exposed to both an endotoxin and a statin.

"We chose to use a statin because we know it blocks production of cholesterol (a type of lipid), but statins also produce some anti-inflammatory effects. We wanted to see what else happens. And in fact, we saw some unexpected changes in certain metabolites."

Metabolites are the players and products of metabolism – the set of chemical reactions in cells that produce and sustain life.

Dennis said the findings lay the foundation for on-going and future projects to eventually produce a human "lipidome," a complete inventory of all fat species in the human body and how they work together.

"We only have three more years of the LIPID MAPS project," Dennis said. "But this is really just the beginning."

Co-authors of the paper are Raymond A. Deems of the Department of Chemistry and Biochemistry at UC San Diego; Richard Harkewicz of Department of Pharmacology, UC San Diego School of Medicine; Oswald Quehenberger and Gary Hardiman of UCSD's Department of Medicine, School of Medicine; H. Alex Brown, Stephen B. Milne and David S. Myers of the Department of Pharmacology, Vanderbilt University School of Medicine; Christopher K. Glass of the UCSD's Department of Medicine and Department of Cellular and Molecular Medicine, School of Medicine; Donna Reichart of UCSD's Department of Cellular and Molecular Medicine, School of Medicine; Alfred H. Merrill, Jr., M. Cameron Sullards and Elaine Wang of the Schools of Biology, Chemistry and Biochemistry and the Petit Institute of Bioengineering and Bioscience at Georgia Institute of Technology; Robert C. Murphy of the Department of Pharmacology, University of Colorado Denver; Christian R.H. Raetz, Teresa Garrett, Ziqiang Guan and Andrea C. Ryan of Department of Biochemistry, Duke University Medical Center; David W. Russell, Jeffrey G. McDonald and Bonne M. Thompson of Department of Molecular Genetics, University of Texas Southwestern Medical Center; Walter A. Shaw of Avanti Polar Lipids, Inc; Manish Sud, Yihua Zhao, Shakti Gupta, Mano R. Maurya and Eoin Fahy of the San Diego Supercomputer Center and Shankar Subramaniam of Department of Chemistry and Biochemistry, the Department of Cellular and Molecular Medicine and the San Diego Supercomputer Center, all at UC San Diego.

Funding for this project was provided by the National Institute of General Medical Sciences' Large Scale Collaborative "Glue" grant.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>