Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers describe first functioning 'lipidome' of mouse macrophage

02.12.2010
For the first time, scientists have described not only the identities and quantities of fat species in a living mammalian cell – in this case, a mouse macrophage or white blood cell – but they also report how these lipids react and change over time to a bacterial stimulus triggering the cell's immune response.

Writing in the December 17 issue of the Journal of Biological Chemistry, lead author Edward A. Dennis, PhD, distinguished professor of pharmacology, chemistry and biochemistry at the University of California San Diego School of Medicine, said the work culminates more than seven years of effort by scientists in LIPID MAPS, a national consortium of 12 research laboratories at nine "core" universities, medical research institutes and life sciences companies collaborating to study the structure and function of lipids. UC San Diego serves as lead institution and information clearinghouse. Dennis is principal investigator.

"This paper is the essence of what we originally proposed," said Dennis. "This is our big, initial study, though we've published many other papers and have more in the pipeline." All nine core facilities in LIPID MAPS participated in the study.

Until relatively recently, lipid research has not received the same degree of attention as, say, genes or proteins. But fats are indisputably crucial to cell operations and overall health. Lipids represent major structural and metabolic components of cells and perform essential functions, such as membrane construction, energy production and intracellular communications.

"They're also a key in virtually all diseases," said Dennis. "Any condition involving inflammation involves lipids. It's hard to think of a disease, including cancer, in which lipids don't play some role."

Likewise for the subject of the research: the mouse macrophage.

"It would have been simpler to do this with yeast or bacteria," said Dennis, "but the macrophage is found in every kind of mammalian tissue (under different names). It's a major player in the immune system."

Moreover, scientists were able to study natural macrophages obtained from a live, well-established mouse model, rather than relying upon cultured cells. The model could also be genetically modified to test various hypotheses.

Previous studies have produced increasingly expansive and detailed "parts lists" of lipids. In October, for example, Dennis and colleagues published a paper that identified and quantified almost 600 distinct fat species circulating in human blood.

The new paper goes further. It chronicles the activity of more than 400 fat species in a macrophage after exposure to an endotoxin – a molecule found on the surfaces of bacteria that is recognized by macrophages and which triggers the cell's infection-fighting functions.

Each hour for 24 consecutive hours, scientists measured minuscule increases or decreases of targeted lipids, an indication of greater or lesser activity.

"The result is a temporal model of infection at the level of a single cell," said Dennis.

Similar experiments were conducted with macrophages exposed to a statin (a popular class of cholesterol-lowering drugs) and with macrophages simultaneously exposed to both an endotoxin and a statin.

"We chose to use a statin because we know it blocks production of cholesterol (a type of lipid), but statins also produce some anti-inflammatory effects. We wanted to see what else happens. And in fact, we saw some unexpected changes in certain metabolites."

Metabolites are the players and products of metabolism – the set of chemical reactions in cells that produce and sustain life.

Dennis said the findings lay the foundation for on-going and future projects to eventually produce a human "lipidome," a complete inventory of all fat species in the human body and how they work together.

"We only have three more years of the LIPID MAPS project," Dennis said. "But this is really just the beginning."

Co-authors of the paper are Raymond A. Deems of the Department of Chemistry and Biochemistry at UC San Diego; Richard Harkewicz of Department of Pharmacology, UC San Diego School of Medicine; Oswald Quehenberger and Gary Hardiman of UCSD's Department of Medicine, School of Medicine; H. Alex Brown, Stephen B. Milne and David S. Myers of the Department of Pharmacology, Vanderbilt University School of Medicine; Christopher K. Glass of the UCSD's Department of Medicine and Department of Cellular and Molecular Medicine, School of Medicine; Donna Reichart of UCSD's Department of Cellular and Molecular Medicine, School of Medicine; Alfred H. Merrill, Jr., M. Cameron Sullards and Elaine Wang of the Schools of Biology, Chemistry and Biochemistry and the Petit Institute of Bioengineering and Bioscience at Georgia Institute of Technology; Robert C. Murphy of the Department of Pharmacology, University of Colorado Denver; Christian R.H. Raetz, Teresa Garrett, Ziqiang Guan and Andrea C. Ryan of Department of Biochemistry, Duke University Medical Center; David W. Russell, Jeffrey G. McDonald and Bonne M. Thompson of Department of Molecular Genetics, University of Texas Southwestern Medical Center; Walter A. Shaw of Avanti Polar Lipids, Inc; Manish Sud, Yihua Zhao, Shakti Gupta, Mano R. Maurya and Eoin Fahy of the San Diego Supercomputer Center and Shankar Subramaniam of Department of Chemistry and Biochemistry, the Department of Cellular and Molecular Medicine and the San Diego Supercomputer Center, all at UC San Diego.

Funding for this project was provided by the National Institute of General Medical Sciences' Large Scale Collaborative "Glue" grant.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Strange undertakings: ant queens bury dead to prevent disease
13.10.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>