Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers describe four new species of “killer sponges” from the deep sea


Killer sponges sound like creatures from a B-grade horror movie. In fact, they thrive in the lightless depths of the deep sea.

Scientists first discovered that some sponges are carnivorous about 20 years ago. Since then only seven carnivorous species have been found in all of the northeastern Pacific. A new paper authored by MBARI marine biologist Lonny Lundsten and two Canadian researchers describes four new species of carnivorous sponges living on the deep seafloor, from the Pacific Northwest to Baja California.

A large group of Asbestopluma monticola sponges growing on top of a dead sponge at Davidson Seamount, offshore of the Central California coast.

Image credit: © 2006 MBARI.

Close-up view of Asbestopluma monticola, one of four new species of carnivorous sponges discovered off the West Coast of North America.

Image credit: © 2006 MBARI.

A far cry from your basic kitchen sponge, these animals look more like bare twigs or small shrubs covered with tiny hairs. But the hairs consist of tightly packed bundles of microscopic hooks that trap small animals such as shrimp-like amphipods. Once an animal becomes trapped, it takes only a few hours for sponge cells to begin engulfing and digesting it. After several days, all that is left is an empty shell.

MBARI researchers videotaped the new sponges on the seafloor, then collected a few samples for taxonomic work and species-reference collections. Back in the lab, when they looked closely at the collected sponges, the scientists discovered, as Lundsten put it, “numerous crustacean prey in various states of decomposition.”

Sponges are generally filter feeders, living off of bacteria and single-celled organisms sieved from the surrounding water. They contain specialized cells called choancytes, whose whip-like tails move continuously to create a flow of water which brings food to the sponge. However, most carnivorous sponges have no choancytes. As Lundsten explained, “To keep beating the whip-like tails of the choancytes takes a lot of energy. And food is hard to come by in the deep sea. So these sponges trap larger, more nutrient-dense organisms, like crustaceans, using beautiful and intricate microscopic hooks.”

The spikiness of two these new sponges is reflected in the name of their genus—Asbestopluma. One of these, Asbestopluma monticola was first collected from the top of Davidson Seamount, an extinct underwater volcano off the Central California coast (monticola means “mountain-dweller” in Latin).

A second new species, Asbestopluma rickettsi, was named after marine biologist Ed Ricketts, who was immortalized in John Steinbeck’s book, Cannery Row. This sponge was observed at two locations offshore of Southern California. At one of these spots, the sponge was living near colonies of clams and tubeworms that use bacteria to obtain nutrition from methane (natural gas) seeping out of the seafloor. Although A. rickettsi has spines, the researchers did not see any animals trapped on the specimens they collected. Ongoing research suggests that this sponge, like its “chemosynthetic” neighbors, can use methane-loving bacteria as a food source.

The third and fourth new species of carnivorous sponges were also observed near communities of chemosynthetic animals. However these communities were associated with deep-sea hydrothermal vents, where plumes of hot, mineral-rich water flow out of the seafloor.

One new species, Cladorhiza caillieti, was found on recent lava flows along the Juan de Fuca Ridge, a volcanic ridge offshore of Vancouver Island. The fourth sponge, Cladorhiza evae, was discovered far to the south, in a newly discovered hydrothermal vent field on the Alarcon Rise, off the tip of Baja California. Specimens of both these sponges had numerous prey trapped among their spines.

Although it’s clear that the sponges with trapped animals were consuming their crustacean prey, the authors are looking forward to the day when they will actually get to see this process in action. Until then, horror-movie fans will have plenty to look forward to—as Lundsten and his coauthors noted in their recent paper, “Numerous additional carnivorous sponges from the Northeast Pacific (which have been seen and collected by the authors) await description, and many more, likely, await discovery.”

Link to on-line version of news release:

Link to images associated with this news release:

MBARI YouTube Video about this release:

Media Contact:
Kim Fulton-Bennett (MBARI):

Kim Fulton-Bennett | MBARI

More articles from Life Sciences:

nachricht Understanding a missing link in how antidepressants work
25.11.2015 | Max Planck Institute of Psychiatry, München

nachricht Plant Defense as a Biotech Tool
25.11.2015 | Austrian Centre of Industrial Biotechnology (ACIB)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

Im Focus: Climate Change: Warm water is mixing up life in the Arctic

AWI researchers’ unique 15-year observation series reveals how sensitive marine ecosystems in polar regions are to change

The warming of arctic waters in the wake of climate change is likely to produce radical changes in the marine habitats of the High North. This is indicated by...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Harnessing a peptide holds promise for increasing crop yields without more fertilizer

25.11.2015 | Agricultural and Forestry Science

Earth's magnetic field is not about to flip

25.11.2015 | Earth Sciences

Tracking down the 'missing' carbon from the Martian atmosphere

25.11.2015 | Physics and Astronomy

More VideoLinks >>>