Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers describe four new species of “killer sponges” from the deep sea

15.04.2014

Killer sponges sound like creatures from a B-grade horror movie. In fact, they thrive in the lightless depths of the deep sea.

Scientists first discovered that some sponges are carnivorous about 20 years ago. Since then only seven carnivorous species have been found in all of the northeastern Pacific. A new paper authored by MBARI marine biologist Lonny Lundsten and two Canadian researchers describes four new species of carnivorous sponges living on the deep seafloor, from the Pacific Northwest to Baja California.


A large group of Asbestopluma monticola sponges growing on top of a dead sponge at Davidson Seamount, offshore of the Central California coast.

Image credit: © 2006 MBARI.


Close-up view of Asbestopluma monticola, one of four new species of carnivorous sponges discovered off the West Coast of North America.

Image credit: © 2006 MBARI.

A far cry from your basic kitchen sponge, these animals look more like bare twigs or small shrubs covered with tiny hairs. But the hairs consist of tightly packed bundles of microscopic hooks that trap small animals such as shrimp-like amphipods. Once an animal becomes trapped, it takes only a few hours for sponge cells to begin engulfing and digesting it. After several days, all that is left is an empty shell.

MBARI researchers videotaped the new sponges on the seafloor, then collected a few samples for taxonomic work and species-reference collections. Back in the lab, when they looked closely at the collected sponges, the scientists discovered, as Lundsten put it, “numerous crustacean prey in various states of decomposition.”

Sponges are generally filter feeders, living off of bacteria and single-celled organisms sieved from the surrounding water. They contain specialized cells called choancytes, whose whip-like tails move continuously to create a flow of water which brings food to the sponge. However, most carnivorous sponges have no choancytes. As Lundsten explained, “To keep beating the whip-like tails of the choancytes takes a lot of energy. And food is hard to come by in the deep sea. So these sponges trap larger, more nutrient-dense organisms, like crustaceans, using beautiful and intricate microscopic hooks.”

The spikiness of two these new sponges is reflected in the name of their genus—Asbestopluma. One of these, Asbestopluma monticola was first collected from the top of Davidson Seamount, an extinct underwater volcano off the Central California coast (monticola means “mountain-dweller” in Latin).

A second new species, Asbestopluma rickettsi, was named after marine biologist Ed Ricketts, who was immortalized in John Steinbeck’s book, Cannery Row. This sponge was observed at two locations offshore of Southern California. At one of these spots, the sponge was living near colonies of clams and tubeworms that use bacteria to obtain nutrition from methane (natural gas) seeping out of the seafloor. Although A. rickettsi has spines, the researchers did not see any animals trapped on the specimens they collected. Ongoing research suggests that this sponge, like its “chemosynthetic” neighbors, can use methane-loving bacteria as a food source.

The third and fourth new species of carnivorous sponges were also observed near communities of chemosynthetic animals. However these communities were associated with deep-sea hydrothermal vents, where plumes of hot, mineral-rich water flow out of the seafloor.

One new species, Cladorhiza caillieti, was found on recent lava flows along the Juan de Fuca Ridge, a volcanic ridge offshore of Vancouver Island. The fourth sponge, Cladorhiza evae, was discovered far to the south, in a newly discovered hydrothermal vent field on the Alarcon Rise, off the tip of Baja California. Specimens of both these sponges had numerous prey trapped among their spines.

Although it’s clear that the sponges with trapped animals were consuming their crustacean prey, the authors are looking forward to the day when they will actually get to see this process in action. Until then, horror-movie fans will have plenty to look forward to—as Lundsten and his coauthors noted in their recent paper, “Numerous additional carnivorous sponges from the Northeast Pacific (which have been seen and collected by the authors) await description, and many more, likely, await discovery.”

Link to on-line version of news release:

http://www.mbari.org/news/news_releases/2014/killersponges/killersponges-release.html

Link to images associated with this news release:

http://www.mbari.org/news/news_releases/2014/killersponges/killersponges-images.html

MBARI YouTube Video about this release:

http://www.youtube.com/watch?list=PL8y7x0SoYxpdwG4G6XN-Yzb6rBVU2pK8W&feature=player_detailpage&v=oJeyOU4eSKw

Media Contact:
Kim Fulton-Bennett (MBARI):
831-775-1835, kfb@mbari.org

Kim Fulton-Bennett | MBARI

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>