Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers describe how cells take out the trash to prevent disease

12.11.2008
Garbage collectors are important for removing trash; without them waste accumulates and can quickly become a health hazard. Similarly, individual cells that make up such biological organisms as humans also have sophisticated methods for managing waste.

For example, cells have developed complex systems for recycling, reusing and disposing of damaged, nonfunctional waste proteins. When such systems malfunction and these proteins accumulate, they can become toxic, resulting in many diseases, including Alzheimer's, cystic fibrosis and developmental disorders.

Scott Emr, director of the Weill Institute for Cell and Molecular Biology at Cornell, and colleagues, describe in detail how cells recycle protein waste in two recent papers appearing in the journals Cell and Developmental Cell.

"We are interested in understanding how cells deal with garbage," said Emr. "It's really a very sophisticated recycling system."

Cells use enzymes known as proteases to break down proteins into their component amino acids in the cytoplasm -- the fluid inside the cell's surface membrane. Those amino acids are then reused to make new proteins. But water-insoluble proteins embedded in the cell's membrane require a much more complicated recycling process.

Emr's paper in Cell identifies a family of proteins that controls the removal of unwanted water-insoluble proteins from the membrane. The research advances understanding of how cells recognize which proteins out of hundreds on a cell's surface should be removed. For example, hormone receptors at a cell's surface signal such processes within the cell as growth and proliferation. To inactivate these receptors and terminate the growth signal, receptors are tagged for removal. Failure to inactivate can lead to developmental diseases and cancer.

The researchers, including postdoctoral fellows Jason MacGurn and Chris Stefan, identified nine related proteins in yeast, which they named the "arrestin-related trafficking" adaptors or ARTs. Each of these proteins identifies and binds to a different set of membrane proteins. Once bound, the ART protein links to an enzyme that attaches a chemical tag for that protein's removal. The ARTs are found in both yeast and humans, suggesting the fundamental nature of their function.

Once the protein is tagged, the piece of membrane with the targeted protein forms a packet, called a vesicle, that enters the cell's cytoplasm. There, the vesicle enters a larger membrane body called an endosome, which in turn dumps it into another compartment called the lysosome, where special enzymes break apart big molecules to their core units: proteins to amino acids, membranes to fatty acids, carbohydrates to sugars and nucleic acids to nucleotides, and those basic materials are then reused.

The paper in Developmental Cell, co-authored by Emr with postdoctoral fellows David Teis and Suraj Saksena, describes for the first time how a set of four proteins assemble into a highly ordered complex. This complex encircles membrane proteins that must be disposed of in the lysosome. Emr's lab was the first to identify and characterize these protein complexes (known as ESCRTs). The Developmental Cell paper describes the order of events in which the ESCRT complexes encircle and deliver "waste" proteins into vesicles destined for recycling in the lysosome.

Emr's ESCRT discovery has allowed researchers to better understand how the AIDS virus is released from its host cell. HIV hijacks the cell's ESCRT machinery during virus budding. "So, if you block the function of ESCRTs, you could block HIV release," said Emr.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>