Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers describe how cells take out the trash to prevent disease

12.11.2008
Garbage collectors are important for removing trash; without them waste accumulates and can quickly become a health hazard. Similarly, individual cells that make up such biological organisms as humans also have sophisticated methods for managing waste.

For example, cells have developed complex systems for recycling, reusing and disposing of damaged, nonfunctional waste proteins. When such systems malfunction and these proteins accumulate, they can become toxic, resulting in many diseases, including Alzheimer's, cystic fibrosis and developmental disorders.

Scott Emr, director of the Weill Institute for Cell and Molecular Biology at Cornell, and colleagues, describe in detail how cells recycle protein waste in two recent papers appearing in the journals Cell and Developmental Cell.

"We are interested in understanding how cells deal with garbage," said Emr. "It's really a very sophisticated recycling system."

Cells use enzymes known as proteases to break down proteins into their component amino acids in the cytoplasm -- the fluid inside the cell's surface membrane. Those amino acids are then reused to make new proteins. But water-insoluble proteins embedded in the cell's membrane require a much more complicated recycling process.

Emr's paper in Cell identifies a family of proteins that controls the removal of unwanted water-insoluble proteins from the membrane. The research advances understanding of how cells recognize which proteins out of hundreds on a cell's surface should be removed. For example, hormone receptors at a cell's surface signal such processes within the cell as growth and proliferation. To inactivate these receptors and terminate the growth signal, receptors are tagged for removal. Failure to inactivate can lead to developmental diseases and cancer.

The researchers, including postdoctoral fellows Jason MacGurn and Chris Stefan, identified nine related proteins in yeast, which they named the "arrestin-related trafficking" adaptors or ARTs. Each of these proteins identifies and binds to a different set of membrane proteins. Once bound, the ART protein links to an enzyme that attaches a chemical tag for that protein's removal. The ARTs are found in both yeast and humans, suggesting the fundamental nature of their function.

Once the protein is tagged, the piece of membrane with the targeted protein forms a packet, called a vesicle, that enters the cell's cytoplasm. There, the vesicle enters a larger membrane body called an endosome, which in turn dumps it into another compartment called the lysosome, where special enzymes break apart big molecules to their core units: proteins to amino acids, membranes to fatty acids, carbohydrates to sugars and nucleic acids to nucleotides, and those basic materials are then reused.

The paper in Developmental Cell, co-authored by Emr with postdoctoral fellows David Teis and Suraj Saksena, describes for the first time how a set of four proteins assemble into a highly ordered complex. This complex encircles membrane proteins that must be disposed of in the lysosome. Emr's lab was the first to identify and characterize these protein complexes (known as ESCRTs). The Developmental Cell paper describes the order of events in which the ESCRT complexes encircle and deliver "waste" proteins into vesicles destined for recycling in the lysosome.

Emr's ESCRT discovery has allowed researchers to better understand how the AIDS virus is released from its host cell. HIV hijacks the cell's ESCRT machinery during virus budding. "So, if you block the function of ESCRTs, you could block HIV release," said Emr.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>