Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Derive First Embryonic Stem Cells From Rats

29.12.2008
Researchers at the University of Southern California (USC) have, for the first time in history, derived authentic embryonic stem (ES) cells from rats. This breakthrough finding will enable scientists to create far more effective animal models for the study of a range of human diseases.

The research will be published in the Dec. 26 issue of the journal Cell.

“This is a major development in stem cell research because we know that rats are much more closely related to humans than mice in many aspects of biology. The research direction of many labs around the world will change because of the availability of rat ES cells,” says Qi-Long Ying, Ph.D., assistant professor of Cell and Neurobiology at the Keck School of Medicine of USC, researcher at the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, and the study’s principal investigator.

The finding brings scientists much closer to creating “knockout” rats—animals that are genetically modified to lack one or more genes—for biomedical research. By observing what happens to animals when specific genes are removed, researchers can identify the function of the gene and whether it is linked to a specific disease.

“Without ES cells it is impossible to perform precise genetic modifications for the creation of the disease model we want,” he says. “The availability of rat ES cells will greatly facilitate the creation of rat models for the study of different human diseases, such as cancer, diabetes, high blood pressure, addiction and autoimmune diseases.”

Ying, a native of China, notes that this breakthrough research occurred during 2008, the Chinese year of the rat.

Embryonic stem cells are derived from a group of cells called the inner cell mass in a very early stage embryo. ES cells provide researchers with a valuable tool to address fundamental biological questions, because they enable scientists to study how genes function, and to develop animals with conditions that mimic important human diseases.

The first ES cell lines were established from mice in 1981 by Martin Evans of Cardiff University, UK, who was last year awarded the Nobel Prize in Medicine or Physiology. Researchers have long been working on establishing rat ES cells, but faced technical hurdles because the conventional methods developed for the derivation of mouse cells did not work in rats.

Building on recent research into how ES cells are maintained, the USC researchers found that rat ES cells can be efficiently derived and grown in the presence of the “3i medium,” which consists of molecules that inhibit three specific gene signaling components (GSK3, MEK and FGF receptor kinase). This approach insulates the stem cell from signals that would normally cause it to differentiate, or turn into specialized types of body cells. By blocking these signals, Ying and colleagues found that stem cells from rats, which have previously failed to propagate at all, could be grown indefinitely in the laboratory in the primitive embryonic state.

An accompanying study led by researchers at the University of Cambridge, U.K., reported similar findings, independently verifying that authentic ES cells can be established from rats. Both papers will be published in the upcoming issue of Cell.

“The development of rat embryonic stem cells, long sought by researchers around the world, is a major advance in biomedical science,” says Martin Pera, Ph.D., director of the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC. “These new stem cell lines will make a huge contribution to basic and applied research and drug development, by providing a technology platform for facile genetic manipulation of a mammalian species that is widely used in academic and industrial labs studying physiology, pathology and pharmacology.”

Until now, authentic ES cells have never been established from humans or animals other than mice. This new key understanding into how ES cells are maintained in culture may eventually enable scientists to establish real ES cell lines from a number of other mammals, which could have significant implications for organ transplantations and the development of drug therapies, Ying says. Researchers at USC are currently working on generating the first gene knockout rat through ES cell-based technologies.

“If our work is feasible it is likely that many labs will follow up to generate different types of gene knockout rat models,” he says. “This will have a major impact on the future of biomedical research.”

Ping Li, Chang Tong, Ruty Mehrian-Shai, Li Jia, Nancy Wu, Youzhen Yan, Eric N. Schulze, Houyan Song, Chih-Lin Shieh, Martin F. Pera, Qi-Long Ying. “Germline Competent Embryonic Stem Cells Derived from Rat Blatocysts.” Cell. D-08-01205R2.

Sara Reeve | Newswise Science News
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>