Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Derive First Embryonic Stem Cells From Rats

29.12.2008
Researchers at the University of Southern California (USC) have, for the first time in history, derived authentic embryonic stem (ES) cells from rats. This breakthrough finding will enable scientists to create far more effective animal models for the study of a range of human diseases.

The research will be published in the Dec. 26 issue of the journal Cell.

“This is a major development in stem cell research because we know that rats are much more closely related to humans than mice in many aspects of biology. The research direction of many labs around the world will change because of the availability of rat ES cells,” says Qi-Long Ying, Ph.D., assistant professor of Cell and Neurobiology at the Keck School of Medicine of USC, researcher at the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, and the study’s principal investigator.

The finding brings scientists much closer to creating “knockout” rats—animals that are genetically modified to lack one or more genes—for biomedical research. By observing what happens to animals when specific genes are removed, researchers can identify the function of the gene and whether it is linked to a specific disease.

“Without ES cells it is impossible to perform precise genetic modifications for the creation of the disease model we want,” he says. “The availability of rat ES cells will greatly facilitate the creation of rat models for the study of different human diseases, such as cancer, diabetes, high blood pressure, addiction and autoimmune diseases.”

Ying, a native of China, notes that this breakthrough research occurred during 2008, the Chinese year of the rat.

Embryonic stem cells are derived from a group of cells called the inner cell mass in a very early stage embryo. ES cells provide researchers with a valuable tool to address fundamental biological questions, because they enable scientists to study how genes function, and to develop animals with conditions that mimic important human diseases.

The first ES cell lines were established from mice in 1981 by Martin Evans of Cardiff University, UK, who was last year awarded the Nobel Prize in Medicine or Physiology. Researchers have long been working on establishing rat ES cells, but faced technical hurdles because the conventional methods developed for the derivation of mouse cells did not work in rats.

Building on recent research into how ES cells are maintained, the USC researchers found that rat ES cells can be efficiently derived and grown in the presence of the “3i medium,” which consists of molecules that inhibit three specific gene signaling components (GSK3, MEK and FGF receptor kinase). This approach insulates the stem cell from signals that would normally cause it to differentiate, or turn into specialized types of body cells. By blocking these signals, Ying and colleagues found that stem cells from rats, which have previously failed to propagate at all, could be grown indefinitely in the laboratory in the primitive embryonic state.

An accompanying study led by researchers at the University of Cambridge, U.K., reported similar findings, independently verifying that authentic ES cells can be established from rats. Both papers will be published in the upcoming issue of Cell.

“The development of rat embryonic stem cells, long sought by researchers around the world, is a major advance in biomedical science,” says Martin Pera, Ph.D., director of the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC. “These new stem cell lines will make a huge contribution to basic and applied research and drug development, by providing a technology platform for facile genetic manipulation of a mammalian species that is widely used in academic and industrial labs studying physiology, pathology and pharmacology.”

Until now, authentic ES cells have never been established from humans or animals other than mice. This new key understanding into how ES cells are maintained in culture may eventually enable scientists to establish real ES cell lines from a number of other mammals, which could have significant implications for organ transplantations and the development of drug therapies, Ying says. Researchers at USC are currently working on generating the first gene knockout rat through ES cell-based technologies.

“If our work is feasible it is likely that many labs will follow up to generate different types of gene knockout rat models,” he says. “This will have a major impact on the future of biomedical research.”

Ping Li, Chang Tong, Ruty Mehrian-Shai, Li Jia, Nancy Wu, Youzhen Yan, Eric N. Schulze, Houyan Song, Chih-Lin Shieh, Martin F. Pera, Qi-Long Ying. “Germline Competent Embryonic Stem Cells Derived from Rat Blatocysts.” Cell. D-08-01205R2.

Sara Reeve | Newswise Science News
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>