Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Derive First Embryonic Stem Cells From Rats

Researchers at the University of Southern California (USC) have, for the first time in history, derived authentic embryonic stem (ES) cells from rats. This breakthrough finding will enable scientists to create far more effective animal models for the study of a range of human diseases.

The research will be published in the Dec. 26 issue of the journal Cell.

“This is a major development in stem cell research because we know that rats are much more closely related to humans than mice in many aspects of biology. The research direction of many labs around the world will change because of the availability of rat ES cells,” says Qi-Long Ying, Ph.D., assistant professor of Cell and Neurobiology at the Keck School of Medicine of USC, researcher at the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, and the study’s principal investigator.

The finding brings scientists much closer to creating “knockout” rats—animals that are genetically modified to lack one or more genes—for biomedical research. By observing what happens to animals when specific genes are removed, researchers can identify the function of the gene and whether it is linked to a specific disease.

“Without ES cells it is impossible to perform precise genetic modifications for the creation of the disease model we want,” he says. “The availability of rat ES cells will greatly facilitate the creation of rat models for the study of different human diseases, such as cancer, diabetes, high blood pressure, addiction and autoimmune diseases.”

Ying, a native of China, notes that this breakthrough research occurred during 2008, the Chinese year of the rat.

Embryonic stem cells are derived from a group of cells called the inner cell mass in a very early stage embryo. ES cells provide researchers with a valuable tool to address fundamental biological questions, because they enable scientists to study how genes function, and to develop animals with conditions that mimic important human diseases.

The first ES cell lines were established from mice in 1981 by Martin Evans of Cardiff University, UK, who was last year awarded the Nobel Prize in Medicine or Physiology. Researchers have long been working on establishing rat ES cells, but faced technical hurdles because the conventional methods developed for the derivation of mouse cells did not work in rats.

Building on recent research into how ES cells are maintained, the USC researchers found that rat ES cells can be efficiently derived and grown in the presence of the “3i medium,” which consists of molecules that inhibit three specific gene signaling components (GSK3, MEK and FGF receptor kinase). This approach insulates the stem cell from signals that would normally cause it to differentiate, or turn into specialized types of body cells. By blocking these signals, Ying and colleagues found that stem cells from rats, which have previously failed to propagate at all, could be grown indefinitely in the laboratory in the primitive embryonic state.

An accompanying study led by researchers at the University of Cambridge, U.K., reported similar findings, independently verifying that authentic ES cells can be established from rats. Both papers will be published in the upcoming issue of Cell.

“The development of rat embryonic stem cells, long sought by researchers around the world, is a major advance in biomedical science,” says Martin Pera, Ph.D., director of the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC. “These new stem cell lines will make a huge contribution to basic and applied research and drug development, by providing a technology platform for facile genetic manipulation of a mammalian species that is widely used in academic and industrial labs studying physiology, pathology and pharmacology.”

Until now, authentic ES cells have never been established from humans or animals other than mice. This new key understanding into how ES cells are maintained in culture may eventually enable scientists to establish real ES cell lines from a number of other mammals, which could have significant implications for organ transplantations and the development of drug therapies, Ying says. Researchers at USC are currently working on generating the first gene knockout rat through ES cell-based technologies.

“If our work is feasible it is likely that many labs will follow up to generate different types of gene knockout rat models,” he says. “This will have a major impact on the future of biomedical research.”

Ping Li, Chang Tong, Ruty Mehrian-Shai, Li Jia, Nancy Wu, Youzhen Yan, Eric N. Schulze, Houyan Song, Chih-Lin Shieh, Martin F. Pera, Qi-Long Ying. “Germline Competent Embryonic Stem Cells Derived from Rat Blatocysts.” Cell. D-08-01205R2.

Sara Reeve | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>