Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers demonstrate reversible generation of a high capacity hydrogen storage material

08.07.2009
Researchers at the U.S. Department of Energy's Savannah River National Laboratory have created a reversible route to generate aluminum hydride, a high capacity hydrogen storage material.

This achievement is not only expected to accelerate the development of a whole class of storage materials, but also has far reaching applications in areas spanning energy technology and synthetic chemistry.

"We believe our research has provided a feasible route to regenerate aluminum hydride, a high capacity hydrogen storage material," says Dr. Ragaiy Zidan of SRNL, lead researcher on the project. The SRNL team, supported by the DOE Office of Energy Efficiency and Renewable Energy, has developed a novel closed cycle for producing aluminum hydride (AlH3), also known as alane, that potentially offers a cost-effective method of regenerating the hydrogen storing material in a way that allows it to repeatedly release and recharge its hydrogen. In this process, the hydride is made via an electrochemical method, and the starting material is regenerated directly with hydrogen. Although many attempts have been made in the past to make alane electrochemically, none of these previous attempts were totally successful.

For years, one of the major obstacles to the realization of the hydrogen economy is hydrogen storage. Solid-state storage, using solid materials such as metals that absorb hydrogen and release it as needed, has many safety and practicality advantages over storing hydrogen as a liquid or gas, and many storage materials have been examined trying to meet DOE's goals. Several materials have been discovered that have met or exceeded the DOE gravimetric and/or volumetric performance targets. Of those, however, the majority do not have the required thermodynamic and kinetic properties that allow them to release their hydrogen when needed, and be efficiently and economically reloaded with hydrogen when spent.

Alane possesses the desired qualities, but had been considered impractical because of the high pressures required to combine hydrogen and aluminum to reform the hydride material. Alternate methods of production using chemical synthesis have typically produced stable metal chloride byproducts that make it practically impossible to regenerate the alane. The electrochemical cycle demonstrated by Dr. Zidan and the SRNL team for production of alane avoids both of these issues.

In conjunction with this research, the SRNL team discovered novel ways to facilitate separation and formation of aluminum hydride that also apply to the formation of other complex metal hydrides and have the potential to cost-effectively regenerate other high capacity hydrogen storage materials. The SRNL results are expected to accelerate the development of a whole class of similar materials needed for hydrogen, batteries and other energy storage applications.

In addition, this work will significantly impact other fields including those of thin films, adduct based syntheses, and the recycling and regeneration of other materials.

The research is reported in an article published in Chem. Commun., 2009, 3717�, a publication of the Royal Society of Chemistry. The work was supported by a grant from the U.S. Department of Energy.

SRNL has a long history of successful research and development in the field of hydrogen storage methods, an outgrowth of the Laboratory's decades of support for the National Nuclear Security Administration's tritium mission. Tritium is the radioactive form of hydrogen used in national defense.

SRNL is DOE's applied research and development national laboratory at the Savannah River Site (SRS). SRNL puts science to work to support DOE and the nation in the areas of environmental management, national and homeland security, and energy security. The management and operating contractor for SRS and SRNL is Savannah River Nuclear Solutions, LLC.

Angeline French | EurekAlert!
Further information:
http://www.srnl.doe.gov

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>