Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers decipher modus operandi of potential Alzheimer’s drug

20.02.2013
The chemical compound known as “methylene blue” is a potential candidate for treating Alzheimer’s, as it prevents the harmful clumping of so-called tau proteins typically associated with this disease. However, until now it was unknown why methylene blue had this effect.

Researchers from Göttingen and Bonn have now shed light on this microscopic process. The study published in “Angewandte Chemie” might help to work out strategies for developing potential drugs. As the team of scientist including Markus Zweckstetter and Eckhard Mandelkow report, methylene blue inactivates molecular residues that promote the bonding of tau proteins.

Methylene blue is a multi-talented substance with a long history. The synthetic compound was first produced in 1876, and since then has served not only as a blue dye, but also as a medical drug – for example to treat malaria and prevent urinary tract infections. It is now also being debated as a potential treatment for Alzheimer’s disease.

Methylene blue works in many ways. With regard to Alzheimer’s, it is interesting to note that it prevents the clumping of “tau proteins”. Such aggregates are typical in numerous forms of dementia: The protein clumps accumulate in the brain cells, disrupt their function, and can even kill them.

“Tau proteins are actually extremely important, because they stabilize the transport routes inside each nerve cell,” explains Prof. Eckhard Mandelkow, who works at the German Center for Neurodegenerative Diseases (DZNE) and the caesar research center in Bonn. “However, in cases of Alzheimer’s, they stop doing their job. The transport routes inside the cells break down, and supplies essential for the survival of the cells can no longer reach their destination. In addition, the tau proteins stick together. These aggregates are also harmful and are a typical characteristic of the disease.”

Such characteristics can be reproduced in animal studies. Previously, another team of scientists led by Dr. Eva-Maria Mandelkow was able to prove that methylene blue is able to alleviate the symptoms of an illness in mice and threadworms. However, no significant data from human patients has been collected so far. Furthermore, to date it was unknown, why methylene blue had the observed effect. “Methylene blue inhibits the aggregation process,” Eckhard Mandelkow emphasizes. “But the way in which this happens was unknown until now.”

The study now published in “Angewandte Chemie“ reveals the nature of this process: Markus Zweckstetter’s research group at the DZNE site in Göttingen and the Max Planck Institute for Biophysical Chemistry in Göttingen in collaboration with the Mandelkow team have been able to prove that methylene blue deactivates molecular residues which promote the bonding of tau proteins. Moreover, the researchers found indications that the substance acts as a spacer to keep the proteins apart. These findings could lead to the development of modified forms of methylene blue and new types of treatment.

Background:
Methylene blue tackles sulphur groups
NMR spectroscopy, a powerful technique for investigating biomolecules, was centrally important to the current study. “We found that methylene blue reacts with certain elements in the tau proteins called cysteines,” Prof. Zweckstetter summarizes.

This reaction is highly effective. Methylene blue specifically modifies the tau proteins at critical spots: Of the up to 441 elements which a tau protein can consist of particularly the two cysteines are modified. The elements directly modified are the so-called SH groups, molecular appendages comprising sulphur and hydrogen which are typical of cysteines. Oxygen atoms now couple with them.

“This chemical transformation prevents tau proteins from bonding together,” says Zweckstetter. “Otherwise SH groups from different proteins would react and form a so-called disulfide bridge. Now, this is no longer possible, because the reaction with methylene blue eliminates the SH groups.”

In a healthy organism, the formation of these disulfide bridges is suppressed naturally. “The cell tries to prevent harmful reactions with the help of antioxidants,” says Eckhard Mandelkow. “However, with age and in cases of neurodegenerative diseases such as Alzheimer’s, this protective system weakens allowing tau proteins to aggregate.”

Beta sheets also important

Zweckstetter stresses that along with the disulfide bridges, another mechanism is important for the clumping of tau proteins. “Tau proteins aggregate particularly quickly when disulfide bonds form. These work like a trigger. However, tau proteins can also aggregate without these bridges, albeit more slowly.”

This is due to the structure of the molecule, the backbone of which can fold like an accordion in some places. Such regions can pile up to “beta sheets” when two proteins come together closely enough and in the appropriate orientation. “Our experiments also show a distinct effect of methylene blue on the regions that want to form these beta sheets.” Thus, methylene blue, particularly its derivatives “Azure A” and “Azure B”, which are expected to be predominantly present in the body, also appear to inhibit the aggregation of beta sheets. “Steric hindrance occurs,” Zweckstetter guesses. “When an inhibitor attaches to a beta sheet region of the tau protein, no other tau molecule can lock on.”

There are other substances besides methylene blue that can suppress the aggregation of tau proteins. Some of them focus explicitly on preventing the build-up of beta sheets. The researchers believe that an effective treatment could ultimately require a combination of various substances: “Certainly, one conclusion of our study is that there are different ways to disrupt the pathogenic aggregation of tau proteins.”

Original Publication
„Mechanistic Basis of Phenothiazine-driven Inhibition of Tau Aggregation“, Elias Akoury, Marcus Pickhardt, Michal Gajda, Jacek Biernat, Eckhard Mandelkow, Markus Zweckstetter, Angewandte Chemie, DOI: 10.1002/anie.201208290

http://onlinelibrary.wiley.com/doi/10.1002/anie.201208290/abstract

The German Center for Neurodegenerative Diseases (DZNE) investigates the causes of diseases of the nervous system and develops strategies for prevention, treatment and care. It is an institution of the Helmholtz Association of German Research Centres with sites in Berlin, Bonn, Dresden, Göttingen, Magdeburg, Munich, Rostock/Greifswald, Tübingen and Witten.

Dr. Marcus Neitzert | idw
Further information:
http://www.dzne.de/en

More articles from Life Sciences:

nachricht Stress triggers key molecule to halt transcription of cell's genetic code
28.05.2015 | Stowers Institute for Medical Research

nachricht Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery
28.05.2015 | University of Waterloo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

New Technique Speeds NanoMRI Imaging

28.05.2015 | Physics and Astronomy

One Step Closer to a Single-Molecule Device

28.05.2015 | Power and Electrical Engineering

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery

28.05.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>