Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers decipher manic gene

03.09.2012
Flying high, or down in the dumps - individuals suffering from bipolar disorder alternate between depressive and manic episodes.
Researchers from the University of Bonn and the Central Institute of Mental Health in Mannheim have now discovered, based on patient data and animal models, how the NCAN gene results in the manic symptoms of bipolar disorder. The results have been published in the current issue of "The American Journal of Psychiatry."

Individuals with bipolar disorder are on an emotional rollercoaster. During depressive phases, they suffer from depression, diminished drive and often, also from suicidal thoughts. The manic episodes, however, are characterized by restlessness, euphoria, and delusions of grandeur. The genesis of this disease probably has both hereditary components as well as psychosocial environmental factors.
The NCAN gene plays a major part in how manias manifest

"It has been known that the NCAN gene plays an essential part in bipolar disorder," reports Prof. Dr. Markus M. Nöthen, Director of the Institute of Human Genetics at the University of Bonn. "But until now, the functional connection has not been clear." In a large-scale study, researchers led by the University of Bonn and the Central Institute of Mental Health in Mannheim have now shown how the NCAN gene contributes to the genesis of mania. To do so, they evaluated the genetic data and the related descriptions of symptoms from 1218 patients with differing ratios between the manic and depressive components of bipolar disorder.
Comprehensive data from patients and animal models

Using the patients' detailed clinical data, the researchers tested statis¬tically which of the symptoms are especially closely related to the NCAN gene. "Here it became obvious that the NCAN gene is very closely and quite specifically correlated with the manic symptoms," says Prof. Dr. Marcella Rietschel from the Central Institute of Mental Health in Mann¬heim. According to the data the gene is, however, not responsible for the depressive episodes in bipolar disorder.

Manic mice drank from sugar solution with abandon

A team working with Prof. Dr. Andreas Zimmer, Director of the Institute of Molecular Psychiatry at the University of Bonn, examined the mole¬cular causes effected by the NCAN gene. The researchers studied mice in which the gene had been "knocked out." "It was shown that these animals had no depressive component in their behaviors, only manic ones," says Prof. Zimmer. These knockout mice were, e.g., considerably more active than the control group and showed a higher level of risk-taking behavior. In addition, they tended to exhibit increased reward-seeking behavior, which manifested itself by their unrestrained drinking from a sugar solution offered by the researchers.

Lithium therapy also effective against hyperactivity in mice

Finally, the researchers gave the manic knockout mice lithium – a standard therapy for humans. "The lithium dosage completely stopped the animals' hyperactive behavior," reports Prof. Zimmer. So the results also matched for lithium; the responses of humans and mice regarding the NCAN gene were practically identical. It has been known from prior studies that knocking out the NCAN gene results in a developmental disorder in the brain due to the fact that the production of the neurocan protein is stopped. "As a consequence of this molecular defect, the individuals affected apparently develop manic symptoms later," says Prof. Zimmer.

Opportunity for new therapies

Now the scientists want to perform further studies of the molecular connections of this disorder - also with a view towards new therapies. "We were quite surprised to see how closely the findings for mice and the patients correlated," says Prof. Nöthen. "This level of significance is very rare." With a view towards mania, the agreement between the findings opens up the opportunity to do further molecular studies on the mouse model, whose results will very likely also be applicable to humans. "This is a great prerequisite for advancing the development of new drugs for mania therapy," believes Prof. Rietschel.
Publication: Studies in humans and mice implicate neurocan in the etiology of mania, The American Journal of Psychiatry, DOI: 10.1176/appi.ajp.2012.11101585

Contact:

Prof. Dr. Andreas Zimmer
Director, Institute of Molecular Psychiatry
Ph. 0228/6885300
Email: a.zimmer@uni-bonn.de

Prof. Dr. Markus M. Nöthen
Director, Institute of Human Genetics
Ph. 0228/28722347
Email: markus.noethen@uni-bonn.de

Johannes Seiler | idw
Further information:
http://www.uni-bonn.de

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>