Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers decipher manic gene

03.09.2012
Flying high, or down in the dumps - individuals suffering from bipolar disorder alternate between depressive and manic episodes.
Researchers from the University of Bonn and the Central Institute of Mental Health in Mannheim have now discovered, based on patient data and animal models, how the NCAN gene results in the manic symptoms of bipolar disorder. The results have been published in the current issue of "The American Journal of Psychiatry."

Individuals with bipolar disorder are on an emotional rollercoaster. During depressive phases, they suffer from depression, diminished drive and often, also from suicidal thoughts. The manic episodes, however, are characterized by restlessness, euphoria, and delusions of grandeur. The genesis of this disease probably has both hereditary components as well as psychosocial environmental factors.
The NCAN gene plays a major part in how manias manifest

"It has been known that the NCAN gene plays an essential part in bipolar disorder," reports Prof. Dr. Markus M. Nöthen, Director of the Institute of Human Genetics at the University of Bonn. "But until now, the functional connection has not been clear." In a large-scale study, researchers led by the University of Bonn and the Central Institute of Mental Health in Mannheim have now shown how the NCAN gene contributes to the genesis of mania. To do so, they evaluated the genetic data and the related descriptions of symptoms from 1218 patients with differing ratios between the manic and depressive components of bipolar disorder.
Comprehensive data from patients and animal models

Using the patients' detailed clinical data, the researchers tested statis¬tically which of the symptoms are especially closely related to the NCAN gene. "Here it became obvious that the NCAN gene is very closely and quite specifically correlated with the manic symptoms," says Prof. Dr. Marcella Rietschel from the Central Institute of Mental Health in Mann¬heim. According to the data the gene is, however, not responsible for the depressive episodes in bipolar disorder.

Manic mice drank from sugar solution with abandon

A team working with Prof. Dr. Andreas Zimmer, Director of the Institute of Molecular Psychiatry at the University of Bonn, examined the mole¬cular causes effected by the NCAN gene. The researchers studied mice in which the gene had been "knocked out." "It was shown that these animals had no depressive component in their behaviors, only manic ones," says Prof. Zimmer. These knockout mice were, e.g., considerably more active than the control group and showed a higher level of risk-taking behavior. In addition, they tended to exhibit increased reward-seeking behavior, which manifested itself by their unrestrained drinking from a sugar solution offered by the researchers.

Lithium therapy also effective against hyperactivity in mice

Finally, the researchers gave the manic knockout mice lithium – a standard therapy for humans. "The lithium dosage completely stopped the animals' hyperactive behavior," reports Prof. Zimmer. So the results also matched for lithium; the responses of humans and mice regarding the NCAN gene were practically identical. It has been known from prior studies that knocking out the NCAN gene results in a developmental disorder in the brain due to the fact that the production of the neurocan protein is stopped. "As a consequence of this molecular defect, the individuals affected apparently develop manic symptoms later," says Prof. Zimmer.

Opportunity for new therapies

Now the scientists want to perform further studies of the molecular connections of this disorder - also with a view towards new therapies. "We were quite surprised to see how closely the findings for mice and the patients correlated," says Prof. Nöthen. "This level of significance is very rare." With a view towards mania, the agreement between the findings opens up the opportunity to do further molecular studies on the mouse model, whose results will very likely also be applicable to humans. "This is a great prerequisite for advancing the development of new drugs for mania therapy," believes Prof. Rietschel.
Publication: Studies in humans and mice implicate neurocan in the etiology of mania, The American Journal of Psychiatry, DOI: 10.1176/appi.ajp.2012.11101585

Contact:

Prof. Dr. Andreas Zimmer
Director, Institute of Molecular Psychiatry
Ph. 0228/6885300
Email: a.zimmer@uni-bonn.de

Prof. Dr. Markus M. Nöthen
Director, Institute of Human Genetics
Ph. 0228/28722347
Email: markus.noethen@uni-bonn.de

Johannes Seiler | idw
Further information:
http://www.uni-bonn.de

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>