Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Cut Years from Drug Development with Nanoscopic Bead Technology

19.07.2010
New research accepted by the Journal of Molecular Recognition confirms that a revolutionary technology developed at Wake Forest University will slash years off the time it takes to develop drugs – bringing vital new treatments to patients much more quickly.

Lab-on-Bead uses tiny beads studded with “pins” that match a drug to a disease marker in a single step, so researchers can test an infinite number of possibilities for treatments all at once. When Lab-on-Bead makes a match, it has found a viable treatment for a specific disease – speeding up drug discovery by as much as 10,000 times and cutting out years of testing and re-testing in the laboratory.

“It helps the most interesting new drugs work together to stick their heads up above the crowd,” said Jed C. Macosko, Ph.D., an associate professor of Physics at Wake Forest and primary inventor of the Lab-on-Bead technology. “Each type of drug has its own molecular barcode. Then, with the help of matching DNA barcodes on each nanoscopic bead, all the drugs of a certain type find their own ‘home’ bead and work together to make themselves known in our drug discovery process. It’s kind of like when Dr. Seuss’s Whos down in Whoville all yelled together so that Horton the elephant and all of his friends could hear them.”

Macosko and Martin Guthold, Ph.D., an associate professor of physics at Wake Forest and the co-inventor of Lab-on-Bead, will work with the biotechnology startup NanoMedica Inc. to test how drug companies will use the new tool. The company has relocated to Winston-Salem from New Jersey; Macosko serves as the company’s chief innovation officer and Guthold is its chief science officer. The company has one year to work with the technology to bring it to market or relinquish the rights to the patent.

Lab-on-Bead screens millions of chemicals simultaneously using plastic beads so small that 1,000 of them would fit across a human hair. Pharmaceutical companies would use the technology to identify treatments and diagnostics for conditions ranging from cancer to Alzheimer’s.

One of the targets the research team has focused on is a breast cancer cell called HER2.

“We want to find a molecule that detects that cancer cell,” Guthold said. “In that circumstance, you could use Lab-on-Bead as a diagnostic tool.”

The North Carolina Biotechnology Center, a private, nonprofit corporation funded by the N.C. General Assembly, provided $75,000 in funding for the project. Harvard University in Boston and Université de Strasbourg in Strasbourg, France, are providing the chemicals being screened in the Lab-on-Bead process.

“There are an infinite number of possibilities for combining carbon, nitrogen, hydrogen and other elements into different shapes that interact differently in the cells,” Macosko said. “Those shapes could block cancer – they could block all kinds of things.

“If there’s some cure to a disease or way to diagnose it, we’re going to find it faster.”

The Journal of Molecular Recognition is the peer-reviewed publication of the International Society of Molecular Recognition. The Lab-on-Bead study will be in the September/October issue; it appears online in advance of publication. Co-authors of the study include Natalie R. Gassman, J. Patrick Nelli, Samrat Dutta, Adam Kuhn and Keith Bonin, all of Wake Forest; and Zbigniew Pianowski and Nicolas Winssinger, of Université de Strasbourg.

Cheryl V. Walker | Newswise Science News
Further information:
http://www.wfu.edu

More articles from Life Sciences:

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

nachricht New map may lead to drug development for complex brain disorders, USC researcher says
25.07.2017 | University of Southern California

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA flights gauge summer sea ice melt in the Arctic

25.07.2017 | Earth Sciences

Fungi that evolved to eat wood offer new biomass conversion tool

25.07.2017 | Life Sciences

New map may lead to drug development for complex brain disorders, USC researcher says

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>