Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Cut Years from Drug Development with Nanoscopic Bead Technology

19.07.2010
New research accepted by the Journal of Molecular Recognition confirms that a revolutionary technology developed at Wake Forest University will slash years off the time it takes to develop drugs – bringing vital new treatments to patients much more quickly.

Lab-on-Bead uses tiny beads studded with “pins” that match a drug to a disease marker in a single step, so researchers can test an infinite number of possibilities for treatments all at once. When Lab-on-Bead makes a match, it has found a viable treatment for a specific disease – speeding up drug discovery by as much as 10,000 times and cutting out years of testing and re-testing in the laboratory.

“It helps the most interesting new drugs work together to stick their heads up above the crowd,” said Jed C. Macosko, Ph.D., an associate professor of Physics at Wake Forest and primary inventor of the Lab-on-Bead technology. “Each type of drug has its own molecular barcode. Then, with the help of matching DNA barcodes on each nanoscopic bead, all the drugs of a certain type find their own ‘home’ bead and work together to make themselves known in our drug discovery process. It’s kind of like when Dr. Seuss’s Whos down in Whoville all yelled together so that Horton the elephant and all of his friends could hear them.”

Macosko and Martin Guthold, Ph.D., an associate professor of physics at Wake Forest and the co-inventor of Lab-on-Bead, will work with the biotechnology startup NanoMedica Inc. to test how drug companies will use the new tool. The company has relocated to Winston-Salem from New Jersey; Macosko serves as the company’s chief innovation officer and Guthold is its chief science officer. The company has one year to work with the technology to bring it to market or relinquish the rights to the patent.

Lab-on-Bead screens millions of chemicals simultaneously using plastic beads so small that 1,000 of them would fit across a human hair. Pharmaceutical companies would use the technology to identify treatments and diagnostics for conditions ranging from cancer to Alzheimer’s.

One of the targets the research team has focused on is a breast cancer cell called HER2.

“We want to find a molecule that detects that cancer cell,” Guthold said. “In that circumstance, you could use Lab-on-Bead as a diagnostic tool.”

The North Carolina Biotechnology Center, a private, nonprofit corporation funded by the N.C. General Assembly, provided $75,000 in funding for the project. Harvard University in Boston and Université de Strasbourg in Strasbourg, France, are providing the chemicals being screened in the Lab-on-Bead process.

“There are an infinite number of possibilities for combining carbon, nitrogen, hydrogen and other elements into different shapes that interact differently in the cells,” Macosko said. “Those shapes could block cancer – they could block all kinds of things.

“If there’s some cure to a disease or way to diagnose it, we’re going to find it faster.”

The Journal of Molecular Recognition is the peer-reviewed publication of the International Society of Molecular Recognition. The Lab-on-Bead study will be in the September/October issue; it appears online in advance of publication. Co-authors of the study include Natalie R. Gassman, J. Patrick Nelli, Samrat Dutta, Adam Kuhn and Keith Bonin, all of Wake Forest; and Zbigniew Pianowski and Nicolas Winssinger, of Université de Strasbourg.

Cheryl V. Walker | Newswise Science News
Further information:
http://www.wfu.edu

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>