Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create molecular Braille to identify DNA molecules

28.03.2012
Researchers at UCLA and New York University have developed a method to detect sequence differences in individual DNA molecules by taking nanoscopic pictures of the molecules themselves.

The work is reported in the Journal of the Royal Society Interface.

Using the approach they call "Direct Molecular Recognition," the UCLA and NYU researchers used nanoparticles to turn the DNA molecules into a form of molecular braille that can be read in the scale of nanometers, or one billionth of a meter, using high-speed Atomic Force Microscopy (AFM).

The leaders of the study are: Jason Reed, a research professor, and Professor Jim Gimzewski, nanotechnology pioneer, both at UCLA's California Nanosystems Institute, and Professor Bud Mishra, genomics expert, at NYU's Courant Institute of Mathematical Sciences. This group believes the method will have many practical uses, such as super-sensitive detection of DNA molecules in genomic research and medical diagnostics as well as in identifying pathogens.

While there are a variety of techniques currently used for this purpose, they are time consuming, technically difficult, and expensive. They also require a significant amount of genetic material in order to make accurate readings and often require prior knowledge of the sample composition.

According to Mishra, to overcome these shortcomings, the team devised a "single-cell, single-molecule" method that would dispense with the complex chemical manipulations on which existing methods are based, and, instead, utilize the unique shapes of the molecules themselves as the method of identification. This approach has the benefits of being rapid and sensitive to the level of a single molecule.

Reed says that "the long term goal of our team's research is to dissect, understand, and control the biology of single cells in complex tissues, such as brain, or in malignant tumors. Furthering this body of work requires that we address an unsolved problem in single-cell molecular analysis: the lack of a method to routinely, reliably, and inexpensively determine global gene transcriptional activity."

In their paper, the team closely examined the potential use of this technique to quantify the activity of genes in living tissue, a method known as transcriptional profiling. They were able to show that their Direct Molecular Recognition technique could accurately quantitate the relative abundance of multiple DNA species in a mixture using only a handful of molecules – a result not achievable using other methods.

Their study was supported by a grant to from the National Institute of General Medical Sciences, part of the National Institutes of Health.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>