Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Create Method to Rapidly Identify Specific Strains of Illness

11.07.2013
Researchers from Boston University School of Medicine (BUSM) and George Washington University (GWU) have developed a method to rapidly identify pathogenic species and strains causing illnesses, such as pneumonia, that could help lead to earlier detection of disease outbreaks and pinpoint effective treatments more quickly. The findings are featured online in the journal Genome Research.

Emerging sequencing technologies have revolutionized the collection of genomic data for bioforensics, biosurveillance and for use in clinical settings. However, new approaches are being developed to analyze these large volumes of genetic data.

Principal investigator Evan Johnson, PhD, assistant professor of medicine at BUSM, and Keith Crandall, PhD, director of the Computational Biology Institute at GWU, have created a statistical framework called Pathoscope to identify pathogenic genetic sequences from infected tissue samples.

This unique approach can accurately discriminate between closely related strains of the same species with little coverage of the pathogenic genome. The method also can determine the complete composition of known pathogenic and benign organisms in a biological sample. No other method can accurately identify multiple species or substrains in such a direct and automatic way. Current methods, such as the standard polymerase chain reaction detection or microscope observation, are often imperfect and time-consuming.

“Pathoscope is like completing a complex jigsaw puzzle. Instead of manually assembling the puzzle, which can take days or weeks of tedious effort, we use a statistical algorithm that can determine how the picture should look without actually putting it together,” said Johnson. “Our method can characterize a biological sample faster, more accurately and in a more automated fashion than any other approach out there.”

This work will be relevant in a broad range of scenarios. For example, in hospitals, this sequencing method will allow for rapid screening of thousands of infectious pathogens simultaneously, while being sensitive enough to monitor disease outbreaks caused by specific pathogenic strains. Veterinarians can even apply the method in their practices. This research is also applicable outside of clinical settings, allowing officials to quickly identify agents of bioterrorism (e.g. in a tainted letter) and harmful pathogens on hard surfaces, soil, water or in food products.

“This approach has the ability to drastically change the process for identifying and combating pathogens, whether they’re in a hospital, veterinarian’s office or salmon stream,” Crandall said. Researchers plan to conduct more studies to further verify the efficacy of their approach, and will soon begin to work with the aquaculture industry, helping fishermen with water-quality surveillance.

Funding for this research was provided in part by the National Institutes of Health’s (NIH) National Human Genome Research Institute under grant award number R01HG00569.

Gina Orlando | EurekAlert!
Further information:
http://www.bmc.org

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>