Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Craft Tool to Minimize Threat of Endocrine Disruptors in New Chemicals

07.12.2012
Researchers from North Carolina State University, the National Institute of Environmental Health Sciences and a host of other institutions have developed a safety testing system to help chemists design inherently safer chemicals and processes.

The innovative “TiPED” testing system (Tiered Protocol for Endocrine Disruption) stems from a cross-disciplinary collaboration among scientists, and can be applied at different phases of the chemical design process. The goal of the system is to help steer companies away from inadvertently creating harmful products, and thus avoid adding another BPA or DDT to the marketplace.

A paper describing the work, “Designing Endocrine Disruption Out of the Next Generation of Chemicals,” is published online in the Royal Society of Chemistry journal Green Chemistry.

“In order to reduce our exposure to endocrine disruptors, we have to ensure that new products entering the market do not contain them,” says Dr. Heather Patisaul, an associate professor of biology at NC State and co-author of the paper. “The goal of this project is to develop an effective strategy for chemists, engineers, and manufacturers to identify potential endocrine disruptors before they are used in commercial products. Identifying these types of chemicals early in the design process will ultimately help ensure that we develop the safest products possible, which benefits consumers.”

The work was conducted by biologists, green chemists and others from North America and Europe who say that recent product recalls and bans reveal that neither product manufacturers nor governments have adequate tools for dealing with endocrine disrupting chemicals (EDCs). EDCs are chemicals commonly used in consumer products that can mimic hormones and lead to a host of modern-day health epidemics including cancers, learning disabilities and immune system disorders.

The authors conclude that as our understanding of the threat to human health grows, the need for an effective testing strategy for endocrine disrupting chemicals becomes imperative.

Historically, chemists have aimed to make products that are effective and economical. Considering toxicity when designing new chemicals has not been their responsibility. This collaboration between fields expands the scope of both biologists and chemists to lead to a way to design safer chemicals.

There is a companion website to the paper, www.TiPEDinfo.com. One can access the paper there and learn more about the TiPED system.

The paper was co-authored by researchers from NC State, NIEHS, the University of California, San Diego, the University of California, Irvine, Carnegie Mellon University, University of Texas at Austin, Virginia Commonwealth University, Advancing Green Chemistry, Louisiana Tech University, Medical University of South Carolina, University of California, Berkeley, McGill University, Oregon State University, Tufts University, the Warner Babcock Institute for Green Chemistry, the University of Texas Medical Branch, the University of Missouri–Columbia, the University of Massachusetts-Amherst and Environmental Health Sciences.

-shipman-

Note to Editors: The study abstract follows.

“Designing endocrine disruption out of the next generation of chemicals”

Authors: T. T. Schug, R. Abagyan, B. Blumberg, T. J. Collins, D. Crews, P. L. DeFur, S. M. Dickerson, T. M. Edwards, A. C. Gore, L. J. Guillette, T. Hayes, J. J. Heindel, A. Moore , H. B. Patisaul, T. L. Tal, K. A. Thayer, L. N. Vandenberg, J. C. Warner, C. S. Watson, F. S. vom Saal, R. T. Zoeller, K. P. O’Brien and J. P. Myers.

Published: Dec. 6, Green Chemistry

Abstract: A central goal of green chemistry is to avoid hazard in the design of new chemicals. This objective is best achieved when information about a chemical’s potential hazardous effects is obtained as early in the design process as feasible. Endocrine disruption is a type of hazard that to date has been inadequately addressed by both industrial and regulatory science. To aid chemists in avoiding this hazard, we propose an endocrine disruption testing protocol for use by chemists in the design of new chemicals. The Tiered Protocol for Endocrine Disruption (TiPED) has been created under the oversight of a scientific advisory committee composed of leading representatives from both green chemistry and the environmental health sciences. TiPED is conceived as a tool for new chemical design, thus it starts with a chemist theoretically at “the drawing board.” It consists of five testing tiers ranging from broad in silico evaluation up through specific cell- and whole organism-based assays. To be effective at detecting endocrine disruption, a testing protocol must be able to measure potential hormone-like or hormone-inhibiting effects of chemicals, as well as the many possible interactions and signaling sequellae such chemicals may have with cell-based receptors. Accordingly, we have designed this protocol to broadly interrogate the endocrine system. The proposed protocol will not detect all possible mechanisms of endocrine disruption, because scientific understanding of these phenomena is advancing rapidly. To ensure that the protocol remains current, we have established a plan for incorporating new assays into the protocol as the science advances. In this paper we present the principles that should guide the science of testing new chemicals for endocrine disruption, as well as principles by which to evaluate individual assays for applicability, and laboratories for reliability.

In a ‘proof-of-principle’ test, we ran 6 endocrine disrupting chemicals (EDCs) that act via different endocrinological mechanisms through the protocol using published literature. Each was identified as endocrine active by one or more tiers. We believe that this voluntary testing protocol will be a dynamic tool to facilitate efficient and early identification of potentially problematic chemicals, while ultimately reducing the risks to public health.

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht New insights into the world of trypanosomes
23.08.2017 | Julius-Maximilians-Universität Würzburg

nachricht New Test for Rare Immunodeficiency
23.08.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>