Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers closer to development of drug to prevent deadly immune response

27.08.2010
Researchers have isolated a molecule, small enough to be used as a drug, that can shut down a dysfunctional immune response that causes deadly hemorrhagic shock, results in delayed death of heart attack patients, promotes rejection of transplanted organs and destroys joints in patients with rheumatoid arthritis, according to a paper published in Molecular Immunology.

The molecule, a modified peptide, was extracted from the relatively huge protein shell of a common virus that is a frequent cause of childhood diarrhea, according to the research conducted by a team at Eastern Virginia Medical School and Children's Hospital of The King's Daughters.

The discovery marks a quantum leap toward clinical application by creating a powerful effect with a molecule small enough to be used in medications.

"This puts us in a position to move rapidly from in-vitro testing to in-vivo testing," says Neel Krishna, PhD, an assistant professor of microbiology and molecular cell biology at EVMS and a pediatric virologist at CHKD.

The publication comes almost five years after Dr. Krishna and Kenji Cunnion, MD, an associate professor of pediatrics at EVMS and an infectious disease specialist with Children's Specialty Group at CHKD, inserted a shell of a virus that causes childhood diarrhea into a Petri dish primed to measure the response of a primordial component of the human immune response known as the complement system.

The complement reaction completely stopped.

"Being able to pharmacologically modulate the complement system could have a huge impact on the practice of medicine, potentially saving the lives of victims of hemorrhagic shock, heart attack patients, and even infants who have suffered prolonged hypoxia," says Dr. Krishna. "It could also have a significant impact on treating a wide range of autoimmune and inflammatory diseases."

The complement system is one of the oldest surviving remnants of the earliest life forms and exists in almost identical from in everything from seagulls to starfish.

It developed during millions of years in which the deadliest threat to all life forms, including humans, was not car accidents, heart attacks or the rejection of transplanted organs but infectious disease.

A complex cascade of dozens of biochemical reactions is designed to launch an attack that destroys the membranes of cells damaged by infection.

After trauma has left cells without oxygen for too long, the complement system kicks in when oxygen returns and lays waste to damaged cells that might otherwise survive. This is known as a reperfusion injury, and in some case occurs over a series of days.

In heart attacks, the death of heart cells during reperfusion can be irreversible and lethal. Multiple organ dysfunction syndrome caused by reperfusion injury is the leading cause of death in surgical patients and in trauma patients who survive the first 24 hours.

The inflammatory response also plays a major role in autoimmune and inflammatory diseases such as rheumatoid arthritis.

In earlier published research, the authors showed that the introduction of the harmless protein shell that encases the astrovirus, which causes pediatric diarrhea, shuts down two of the three methods used by the complement system to destroy damaged cells, but doesn't interfere with the part of complement reaction that can offer protection from invading pathogens.

The molecule that modulated the complement cascade, however, was relatively large, consisting of 787 amino acids, too sizable to be used therapeutically.

By meticulously testing smaller shards of the shell, researchers found and then modified a shard consisting of just 30 amino acids that actually was more effective than the larger molecule. That smaller segment, a modified peptide dubbed E23A, makes it a viable candidate for in-vitro testing of the compound.

"In-vitro testing is a significant step toward developing a drug that can be used therapeutically," says Dr. Krishna.

Doug Gardner | EurekAlert!
Further information:
http://www.evms.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>