Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers characterize stem cell function

12.03.2010
The promise of stem cells lies in their unique ability to differentiate into a multitude of different types of cells. But in order to determine how to use stem cells for new therapeutics, scientists and engineers need to answer a fundamental question: if a stem cell changes to look like a certain type of cell, how do we know if it will behave like a certain type of cell?

Researchers at Northwestern University's McCormick School of Engineering are the first to fully characterize a special type of stem cell, endothelial progenitor cells (EPCs) that exist in circulating blood, to see if they can behave as endothelial cells in the body when cultured on a bioengineered surface.

The results, published online in the journal Stem Cells show promise for a new generation of tissue-engineered vascular grafts which could improve the success rate of surgery for peripheral arterial disease. Peripheral arterial disease is estimated to affect one in every 20 Americans over the age of 50, a total of 8 to 12 million people.

"Normally, stem cells are not studied in the context of improving vascular grafts for bypass surgery. Therefore, we had to develop new tests to assess their use in this application," says Guillermo Ameer, senior author of the paper and associate professor of biomedical engineering and surgery. "We looked at the function of the cells on a citric acid-based polymer, which will be the basis for a new generation of bioengineered vascular grafts."

In the study, Josephine Allen, then a graduate student in Ameer's lab, and colleagues isolated endothelial progenitor cells from eight tablespoons of blood. In approximately half of the attempts, the team was able to isolate the EPCs to expand to make millions of endothelial cells that can behave like the cells of a blood vessel.

Once the endothelial-like cell colonies were established, the research team performed a battery of tests to examine the properties and functionality of the cell.

"These new tests show that these endothelial-like cells can inhibit blood clotting and can prevent platelets from adhering to their surface," says Ameer. "But if you antagonize the cells or stimulate them, they will also respond the same way that an endothelial cell would and will clot blood if needed."

The study is an important step in identifying methods to build a tissue-engineered vascular graft. Synthetic grafts, used to treat common diseases such as peripheral arterial disease, have lower success rates when used in small-diameter arteries, such as those found in the leg.

"These small-diameter synthetic grafts are more prone to blood clots and other complications, especially over time," Ameer says. "It's thought that a tissue-engineered graft would allow us to preserve many of the body's natural defenses against these complications."

The Stem Cell paper is titled "Toward Engineering a Human Neoendothelium With Circulating Progenitor Cells." In addition to Ameer, other authors are Josephine B. Allen, Sadiya Khan and Karen A. Lapidos, all of Northwestern.

The work was funded by the Illinois Regenerative Medicine Institute, the Department of Defense and the American Heart Association.

Kyle Delaney | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Shrews shrink in winter and regrow in spring
24.10.2017 | Max-Planck-Institut für Ornithologie

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Shrews shrink in winter and regrow in spring

24.10.2017 | Life Sciences

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>