Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers characterize stem cell function

12.03.2010
The promise of stem cells lies in their unique ability to differentiate into a multitude of different types of cells. But in order to determine how to use stem cells for new therapeutics, scientists and engineers need to answer a fundamental question: if a stem cell changes to look like a certain type of cell, how do we know if it will behave like a certain type of cell?

Researchers at Northwestern University's McCormick School of Engineering are the first to fully characterize a special type of stem cell, endothelial progenitor cells (EPCs) that exist in circulating blood, to see if they can behave as endothelial cells in the body when cultured on a bioengineered surface.

The results, published online in the journal Stem Cells show promise for a new generation of tissue-engineered vascular grafts which could improve the success rate of surgery for peripheral arterial disease. Peripheral arterial disease is estimated to affect one in every 20 Americans over the age of 50, a total of 8 to 12 million people.

"Normally, stem cells are not studied in the context of improving vascular grafts for bypass surgery. Therefore, we had to develop new tests to assess their use in this application," says Guillermo Ameer, senior author of the paper and associate professor of biomedical engineering and surgery. "We looked at the function of the cells on a citric acid-based polymer, which will be the basis for a new generation of bioengineered vascular grafts."

In the study, Josephine Allen, then a graduate student in Ameer's lab, and colleagues isolated endothelial progenitor cells from eight tablespoons of blood. In approximately half of the attempts, the team was able to isolate the EPCs to expand to make millions of endothelial cells that can behave like the cells of a blood vessel.

Once the endothelial-like cell colonies were established, the research team performed a battery of tests to examine the properties and functionality of the cell.

"These new tests show that these endothelial-like cells can inhibit blood clotting and can prevent platelets from adhering to their surface," says Ameer. "But if you antagonize the cells or stimulate them, they will also respond the same way that an endothelial cell would and will clot blood if needed."

The study is an important step in identifying methods to build a tissue-engineered vascular graft. Synthetic grafts, used to treat common diseases such as peripheral arterial disease, have lower success rates when used in small-diameter arteries, such as those found in the leg.

"These small-diameter synthetic grafts are more prone to blood clots and other complications, especially over time," Ameer says. "It's thought that a tissue-engineered graft would allow us to preserve many of the body's natural defenses against these complications."

The Stem Cell paper is titled "Toward Engineering a Human Neoendothelium With Circulating Progenitor Cells." In addition to Ameer, other authors are Josephine B. Allen, Sadiya Khan and Karen A. Lapidos, all of Northwestern.

The work was funded by the Illinois Regenerative Medicine Institute, the Department of Defense and the American Heart Association.

Kyle Delaney | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>