Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Looking for Catalyst That Allows Plants to Produce Hydrocarbons

05.10.2009
Plants and algae may be a source of green, renewable hydrocarbons that could replace the ancient, finite hydrocarbons in fossil fuels, according to a team of researchers led by Iowa State University’s Jackie Shanks.

Shanks, Iowa State’s Manley R. Hoppe Professor of Chemical Engineering, said some plants and algae produce hydrocarbons as a way to store carbon and energy. And those hydrocarbons could be used to create second-generation biofuels.

“These plants are capturing solar energy and creating something that’s chemically identical to petroleum,” Shanks said.

But, she said, researchers don’t know the exact structures, mechanisms, genetics and metabolism of that conversion.

Shanks and a team of researchers recently won a four-year, $2 million grant from the National Science Foundation’s Office of Emerging Frontiers in Research and Innovation to study the production of biological hydrocarbons.

The research team includes Basil Nikolau, Iowa State’s Frances M. Craig Professor in the departments of biochemistry, biophysics and molecular biology and food science and human nutrition, who’s also the deputy director of the NSF Engineering Research Center for Biorenewable Chemicals based at Iowa State; Thomas Bobik, an Iowa State associate professor of biochemistry, biophysics and molecular biology; Gordon Wolfe, an associate professor of biological sciences at California State University, Chico; and Govind Nadathur, a professor of marine sciences at the University of Puerto Rico. The project will also support the research, training and education of a number of post-doctoral researchers, graduate students and undergraduate students at Iowa State and the other universities. And it will provide these young researchers with an opportunity to broaden their training experience with national and international collaborations.

Shanks said the researchers’ specific task is to isolate, characterize and bioengineer a catalyst that creates the biological hydrocarbons.

Nikolau said the current project will not address which plants or algae are the best producers of biological hydrocarbons or how the biological process can best be exploited. He said those studies would build on the discoveries of the current project.

But can plants directly produce hydrocarbons for biofuels? Is that too good to be true?

Shanks said the research could lead to technologies that transform how liquid fuels are produced.

And that’s the kind of project the science foundation’s Office of Emerging Frontiers in Research and Innovation is supporting.

According to the foundation, the office’s goal is to support “transformative opportunities potentially leading to: new research areas …; new industries or capabilities that result in a leadership position for the country; and/or significant progress on a recognized national need or grand challenge.”

A new, sustainable source of hydrocarbons could lead to all of that: “The production of renewable hydrocarbons that would integrate directly into the existing fossil-carbon infrastructure would represent an important advance in biofuels technology,” the researchers wrote in their project proposal. “Transforming this existing industry to a bio-based carbon feed-source is a grand challenge that will need to integrate unique and proficient biological solutions with new engineering efficiencies.”

Contacts:
Jackie Shanks, Chemical and Biological Engineering, (515) 294-4828, jshanks iastate.edu

Basil Nikolau, Biochemistry, Biophysics and Molecular Biology, (515) 294-9423, dimmas@iastate.edu

Mike Krapfl | Newswise Science News
Further information:
http://www.iastate.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>