Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Looking for Catalyst That Allows Plants to Produce Hydrocarbons

Plants and algae may be a source of green, renewable hydrocarbons that could replace the ancient, finite hydrocarbons in fossil fuels, according to a team of researchers led by Iowa State University’s Jackie Shanks.

Shanks, Iowa State’s Manley R. Hoppe Professor of Chemical Engineering, said some plants and algae produce hydrocarbons as a way to store carbon and energy. And those hydrocarbons could be used to create second-generation biofuels.

“These plants are capturing solar energy and creating something that’s chemically identical to petroleum,” Shanks said.

But, she said, researchers don’t know the exact structures, mechanisms, genetics and metabolism of that conversion.

Shanks and a team of researchers recently won a four-year, $2 million grant from the National Science Foundation’s Office of Emerging Frontiers in Research and Innovation to study the production of biological hydrocarbons.

The research team includes Basil Nikolau, Iowa State’s Frances M. Craig Professor in the departments of biochemistry, biophysics and molecular biology and food science and human nutrition, who’s also the deputy director of the NSF Engineering Research Center for Biorenewable Chemicals based at Iowa State; Thomas Bobik, an Iowa State associate professor of biochemistry, biophysics and molecular biology; Gordon Wolfe, an associate professor of biological sciences at California State University, Chico; and Govind Nadathur, a professor of marine sciences at the University of Puerto Rico. The project will also support the research, training and education of a number of post-doctoral researchers, graduate students and undergraduate students at Iowa State and the other universities. And it will provide these young researchers with an opportunity to broaden their training experience with national and international collaborations.

Shanks said the researchers’ specific task is to isolate, characterize and bioengineer a catalyst that creates the biological hydrocarbons.

Nikolau said the current project will not address which plants or algae are the best producers of biological hydrocarbons or how the biological process can best be exploited. He said those studies would build on the discoveries of the current project.

But can plants directly produce hydrocarbons for biofuels? Is that too good to be true?

Shanks said the research could lead to technologies that transform how liquid fuels are produced.

And that’s the kind of project the science foundation’s Office of Emerging Frontiers in Research and Innovation is supporting.

According to the foundation, the office’s goal is to support “transformative opportunities potentially leading to: new research areas …; new industries or capabilities that result in a leadership position for the country; and/or significant progress on a recognized national need or grand challenge.”

A new, sustainable source of hydrocarbons could lead to all of that: “The production of renewable hydrocarbons that would integrate directly into the existing fossil-carbon infrastructure would represent an important advance in biofuels technology,” the researchers wrote in their project proposal. “Transforming this existing industry to a bio-based carbon feed-source is a grand challenge that will need to integrate unique and proficient biological solutions with new engineering efficiencies.”

Jackie Shanks, Chemical and Biological Engineering, (515) 294-4828, jshanks

Basil Nikolau, Biochemistry, Biophysics and Molecular Biology, (515) 294-9423,

Mike Krapfl | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>