Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers capture speedy chemical reaction in mid-stride

In synthetic chemistry, making the best possible use of the needed ingredients is key to optimizing high-quality production at the lowest possible cost.

The element rhodium is a powerful catalyst — a driver of chemical reactions — but is also one of the rarest and most expensive. In addition to its common use in vehicle catalytic converters, rhodium is also used in combination with other metals to efficiently drive a wide range of useful chemical reactions.

Chemists' efforts to study the inner workings of dirhodium metal complex reactions have been hindered by their extreme efficiency and speed, reacting at about 300 times per second. Now, a team of scientists led by University of Wisconsin–Madison chemistry professor John Berry reports an advance that freezes one step of the process long enough to offer researchers a glimpse into the finer mechanism.

Chemical reactions pass through a series of steps from starting material to end product, with intermediate chemical structures formed at each step. The nature of those "part-way" compounds — called intermediates — can tell chemists a great deal about the processes and their efficiency.

However, intermediates normally exist for a second or less before moving to the next step in the reaction, making them extremely difficult to study. The new paper, appearing in this week's issue of Science Express (Sept. 12), describes the isolation and characterization of an intermediate that is stable for hours at 0 degrees Celsius.

"We've provided the first solid fundamental data on these compounds," said Berry, who led the effort to synthesize the stable version of a normally short-lived molecule. "People have thought about it for forty years, but this is the first time that we can actually see it and say this is definitely what's going on."

Berry and UW–Madison graduate student Katherine Kornecki used computational models to predict how the intermediate molecules might be trapped. From those predictions, they were able to identify a suitable dirhodium complex and starting material with the properties needed to stabilize the intermediate compound long enough to study it further.

Formation of the reactive intermediate is visible as the green starting material changes to an ocean blue color that faded over time. Ultraviolet-visible spectrometry showed the formation of a new molecule, and Berry rallied the help of collaborators to make sure they were actually capturing the desired intermediate.

Huw Davies from Emory University provided a starting material that allowed characterization of the compound by vibrational spectroscopy and nuclear magnetic resonance (NMR). Jochen Autschbach from the University of Buffalo used density function theory to predict the NMR features of the compound, and Kyle Lancaster from Cornell University elucidated the compound's structure using a series of X-ray absorption spectroscopy experiments.

"This paper is a wonderful example of how big challenges in chemistry can be solved by employing a multidisciplinary, collaborative approach," says Davies, professor of organic chemistry at Emory University and director of the Center for Selective C-H Functionalization.

In addition to providing evidence of an intermediate previously known only on paper, the finding opens new avenues for the field of catalysis. "Now that we can make the intermediate, we can further explore its reactivity. We can try reactions with substrates that nobody has ever thought of before," Berry says.

The work was supported by grants from the National Science Foundation and the U.S. Department of Energy.

—HongNgoc Pham,; Jill Sakai, 608-262-9772,

John Berry | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>