Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers capture speedy chemical reaction in mid-stride

16.09.2013
In synthetic chemistry, making the best possible use of the needed ingredients is key to optimizing high-quality production at the lowest possible cost.

The element rhodium is a powerful catalyst — a driver of chemical reactions — but is also one of the rarest and most expensive. In addition to its common use in vehicle catalytic converters, rhodium is also used in combination with other metals to efficiently drive a wide range of useful chemical reactions.

Chemists' efforts to study the inner workings of dirhodium metal complex reactions have been hindered by their extreme efficiency and speed, reacting at about 300 times per second. Now, a team of scientists led by University of Wisconsin–Madison chemistry professor John Berry reports an advance that freezes one step of the process long enough to offer researchers a glimpse into the finer mechanism.

Chemical reactions pass through a series of steps from starting material to end product, with intermediate chemical structures formed at each step. The nature of those "part-way" compounds — called intermediates — can tell chemists a great deal about the processes and their efficiency.

However, intermediates normally exist for a second or less before moving to the next step in the reaction, making them extremely difficult to study. The new paper, appearing in this week's issue of Science Express (Sept. 12), describes the isolation and characterization of an intermediate that is stable for hours at 0 degrees Celsius.

"We've provided the first solid fundamental data on these compounds," said Berry, who led the effort to synthesize the stable version of a normally short-lived molecule. "People have thought about it for forty years, but this is the first time that we can actually see it and say this is definitely what's going on."

Berry and UW–Madison graduate student Katherine Kornecki used computational models to predict how the intermediate molecules might be trapped. From those predictions, they were able to identify a suitable dirhodium complex and starting material with the properties needed to stabilize the intermediate compound long enough to study it further.

Formation of the reactive intermediate is visible as the green starting material changes to an ocean blue color that faded over time. Ultraviolet-visible spectrometry showed the formation of a new molecule, and Berry rallied the help of collaborators to make sure they were actually capturing the desired intermediate.

Huw Davies from Emory University provided a starting material that allowed characterization of the compound by vibrational spectroscopy and nuclear magnetic resonance (NMR). Jochen Autschbach from the University of Buffalo used density function theory to predict the NMR features of the compound, and Kyle Lancaster from Cornell University elucidated the compound's structure using a series of X-ray absorption spectroscopy experiments.

"This paper is a wonderful example of how big challenges in chemistry can be solved by employing a multidisciplinary, collaborative approach," says Davies, professor of organic chemistry at Emory University and director of the Center for Selective C-H Functionalization.

In addition to providing evidence of an intermediate previously known only on paper, the finding opens new avenues for the field of catalysis. "Now that we can make the intermediate, we can further explore its reactivity. We can try reactions with substrates that nobody has ever thought of before," Berry says.

The work was supported by grants from the National Science Foundation and the U.S. Department of Energy.

—HongNgoc Pham, hpham@chem.wisc.edu; Jill Sakai, 608-262-9772, jasakai@wisc.edu

John Berry | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>