Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Capture Jumping Genes

08.02.2011
RIPs are alive and well — and moving — in the human genome

An ambitious hunt by Johns Hopkins scientists for actively “jumping genes” in humans has yielded compelling new evidence that the genome, anything but static, contains numerous pesky mobile elements that may help to explain why people have such a variety of physical traits and disease risks.

Using bioinformatics to compare the standard assembly of genetic elements as outlined in the reference human genome to raw whole-genome data from 310 individuals recently made available by the 1000 Genomes Project, the team revealed 1,016 new insertions of RIPs, or retrotransposon insertion polymorphisms, thereby expanding the catalog of insertions that are present in some individuals and absent in others. Their results appeared online October 27 in Genome Research.

Retrotransposons are travelling bits of DNA that replicate by copying and pasting themselves at new locations in the genome. Having duplicated themselves and accumulated over evolutionary history, transposable elements now make up about half of the human genome. However, only a tiny subfamily of these insertions known as LINE-1 (L1) is still active in humans. Line 1 insertions are able to mobilize not only themselves but also other pieces of DNA.

“In any individual, only between 80 to 100 retrotransposons are actively copying and inserting into new sites,” says Haig Kazazian, M.D., professor of human genetics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine. “We’re not only discovering where they are and who has which ones, but also finding out that they insert with a remarkable frequency: On the order of one in every 50 individuals has a brand-new insertion that wasn’t in their parents.”

The researchers recognized L1 retrotransposons — distinguishing them from the vast amount of fixed “fossil” transposable elements that litter the genome — because these actively jumping genes are human specific and almost exactly the same in sequence from one person to another.

“Our genome contains around half a million interspersed L1 sequences that have accumulated over evolutionary history, along with over a million more repeats, most of which were mobilized by L1 elements,” explains Adam D. Ewing, Ph.D., a postdoctoral fellow in Kazazian’s lab. “Since the vast majority of these are ancestral and therefore common to all humans and even some of our primate relatives, we can ignore them and focus on L1s that contain human-specific characters in their sequences. Those are the actively mobilized elements responsible for considerable genomic diversity among human individuals.”

The high frequency of these L1 insertions gives us a better idea about the extent of human diversity, according to Kazazian, whose 22-year focus on retrotransposons seeks to reveal how they alter the expression of human genes.

Just as the structural variants known as single nucleotide polymorphisms (or SNPs, pronounced “snips”) serve as markers for various diseases, the hope is that RIPs — which are up to 6,000 times bigger than SNPs, and therefore may have a stronger effect on gene expression — will correlate with disease phenotypes.

“In that same way that someone had to go out and find the SNPs, this study was about finding RIPs that remain active and continue to produce new insertions,” Kazazian says. “Now we have the background necessary to begin studies that may correlate these L1 insertions with everything from autism to cancer.”

Support for this research came from the National Institutes of Health.

Ewing and Kazazian are the authors of the paper.

On the Web:
Kazazian lab: http://humangenetics.jhmi.edu/index.php/faculty/haig-kazazian.html
Genome Research: genome.cshlp.org/

Maryalice Yakutchik | Newswise Science News
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>