Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers capture images of open channel that moves proteins across cell membranes

Similar to passengers on an urban transit system, every protein made in the cell has a specific destination and function.

Channels in cell membranes help direct these proteins to their appropriate target. Researchers at Boston University School of Medicine (BUSM) and their colleagues have now captured images of these channels as they open to allow proteins to pass through a membrane, while the proteins are being made. These findings are published as a Letter in Nature (Park, E. et al. 2013).

Christopher W. Akey, PhD, professor of physiology and biophysics at BUSM is a co-senior author of the Letter. In addition, the collaborating institutions include Harvard Medical School (HMS), Baylor College of Medicine (BCM) and Georgia Institute of Technology (GT).

Proteins, which are encoded by genes, are large molecules that perform specific functions. Many proteins such as hormones and growth factors are secreted by the cell and move into the bloodstream. These proteins are made in factories called ribosomes, which interact with a family of channels called Sec61/SecY that provide a path across the membrane.

Initially, these nascent, or newly-made, proteins are inserted into channels as the proteins are being made. The channels also aid in inserting nascent proteins into the cell membrane where they function as receptors for drugs and form ion channels that function in vision and in transmitting nerve cell impulses.

In this study, researchers used samples made in E. coli bacteria to determine the structure of the highly conserved SecY channel. Using an electron microscope and computer analysis, researchers were able to capture images of the SecY channel opening when a nascent protein enters the central pore. In particular, the channel undergoes large movements that enlarge the central pore as a first step in allowing the nascent protein to cross the cell membrane and eventually travel to its destination.

"Similar to train cars that transport passengers through a tunnel, SecY/Sec61 channels help nascent proteins move across the cell membrane to reach their target in the body, and this study provides important insight about the function of these channels," said Akey.

Funding for this study was provided in part by the National Institutes of Health's National Institute of General Medical Sciences under grant award number NIH GM45377.

Tom Rapoport, PhD, professor of cell biology, HMS, is a co-senior author. Other collaborators include: Eun Yong Park, PhD, HMS; Jean-François Ménétret, PhD, BUSM; Steven J. Ludtke, PhD, BCM; and JC Gumbart, PhD, GT.

Jenny Eriksen Leary | EurekAlert!
Further information:

Further reports about: HMS Medical Wellness Medicine cell membrane urban transit system

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>