Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers capture images of open channel that moves proteins across cell membranes

24.10.2013
Similar to passengers on an urban transit system, every protein made in the cell has a specific destination and function.

Channels in cell membranes help direct these proteins to their appropriate target. Researchers at Boston University School of Medicine (BUSM) and their colleagues have now captured images of these channels as they open to allow proteins to pass through a membrane, while the proteins are being made. These findings are published as a Letter in Nature (Park, E. et al. 2013).

Christopher W. Akey, PhD, professor of physiology and biophysics at BUSM is a co-senior author of the Letter. In addition, the collaborating institutions include Harvard Medical School (HMS), Baylor College of Medicine (BCM) and Georgia Institute of Technology (GT).

Proteins, which are encoded by genes, are large molecules that perform specific functions. Many proteins such as hormones and growth factors are secreted by the cell and move into the bloodstream. These proteins are made in factories called ribosomes, which interact with a family of channels called Sec61/SecY that provide a path across the membrane.

Initially, these nascent, or newly-made, proteins are inserted into channels as the proteins are being made. The channels also aid in inserting nascent proteins into the cell membrane where they function as receptors for drugs and form ion channels that function in vision and in transmitting nerve cell impulses.

In this study, researchers used samples made in E. coli bacteria to determine the structure of the highly conserved SecY channel. Using an electron microscope and computer analysis, researchers were able to capture images of the SecY channel opening when a nascent protein enters the central pore. In particular, the channel undergoes large movements that enlarge the central pore as a first step in allowing the nascent protein to cross the cell membrane and eventually travel to its destination.

"Similar to train cars that transport passengers through a tunnel, SecY/Sec61 channels help nascent proteins move across the cell membrane to reach their target in the body, and this study provides important insight about the function of these channels," said Akey.

Funding for this study was provided in part by the National Institutes of Health's National Institute of General Medical Sciences under grant award number NIH GM45377.

Tom Rapoport, PhD, professor of cell biology, HMS, is a co-senior author. Other collaborators include: Eun Yong Park, PhD, HMS; Jean-François Ménétret, PhD, BUSM; Steven J. Ludtke, PhD, BCM; and JC Gumbart, PhD, GT.

Jenny Eriksen Leary | EurekAlert!
Further information:
http://www.bmc.org

Further reports about: HMS Medical Wellness Medicine cell membrane urban transit system

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>