Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers build functional ovarian tissue in lab

27.03.2013
A proof-of-concept study suggests the possibility of engineering artificial ovaries in the lab to provide a more natural option for hormone replacement therapy for women.

In Biomaterials, a team from Wake Forest Baptist Medical Center's Institute for Regenerative Medicine report that in the laboratory setting, engineered ovaries showed sustained release of the sex hormones estrogen and progesterone.

Although there are medications that can compensate for the loss of female sex hormone production, the drugs are often not recommended for long-term use due to the increased risk of heart disease and breast cancer.

"Our goal is to develop a tissue- or cell-based hormone therapy – essentially an artificial ovary– to deliver sex hormones in a more natural manner than drugs," said Emmanuel C. Opara, Ph.D., professor of regenerative medicine and senior author. "A bioartificial ovary has the potential to secrete hormones in a natural way based on the body's needs, rather than the patient taking a specific dose of drugs each day."

Ovaries are the female reproductive organs that produce eggs that are fertilized for pregnancy as well as secrete hormones important to bone and cardiovascular health. The loss of ovarian function can be due to surgical removal, chemotherapy and radiation treatments for certain types of cancer, and menopause. The effects of hormone loss can range from hot flashes and vaginal dryness to infertility and increased risk of osteoporosis and heart disease.

"This research project is interesting because it offers hope to replace natural ovarian hormones in women with premature ovarian failure or in women going through menopause," Tamer Yalcinkaya, M.D., associate professor and section head of reproductive medicine at Wake Forest Baptist. "The graft format would bring certain advantages: it would eliminate pharmacokinetic variations of hormones when administered as drugs and would also allow body's feedback mechanisms to control the release of ovarian hormones."

The project to engineer a bioartificial ovary involves encapsulating ovarian cells inside a thin membrane that allows oxygen and nutrients to enter the capsule, but would prevent the patient from rejecting the cells. With this scenario, functional ovarian tissue from donors could be used to engineer bioartificial ovaries for women with non-functioning ovaries.

The Wake Forest Baptist team isolated the two types of endocrine cells found in ovaries (theca and granulosa) from 21-day-old rats. The cells were encapsulated inside materials that are compatible with the body. The scientists evaluated three different ways of arranging the cells inside the capsules.

The function of the capsules was then evaluated in the lab by exposing them to follicle-stimulating hormone and luteinizing hormone, two hormones that stimulate ovaries to produce sex hormones. The arrangement of cells that most closely mimicked the natural ovary (layers of cells in a 3-D shape) secreted levels of estrogen that were 10 times higher than other cell arrangements.

The capsules also secreted progesterone as well as inhibin and activin, two hormones that interact with the pituitary and hypothalamus and are important to the body's natural system to regulate the production of female sex hormones.

"Cells in the multilayer capsules were observed to function in similar fashion to the native ovaries," said Opara. "The secretion of inhibin and activin secretion suggests that these structures could potentially function as an artificial ovary by synchronizing with the body's innate control system."

Opara said the next step in the research, already underway, is to evaluate the function of the ovarian structures in animals.

Opara's co-researchers were Sivanandane Sittadjody, Ph.D, Sunyoung Joo, M.D., Ph.D., James J. Yoo, M.D., Ph.D., and Anthony Atala, M.D., all from Wake Forest Baptist, and Justin M. Saul, Ph.D., a former Wake Forest Baptist researcher now at Miami University.

The study was supported, in part, by the National Institutes of Health (award #R01DK080897).

Media contacts: Karen Richardson, krchrdsn@wakehealth.edu, 336-716-4453; Media Relations Office, 336-716-4587.

Wake Forest Baptist Medical Center is a fully integrated academic medical center located in Winston-Salem, North Carolina. The institution comprises the medical education and research components of Wake Forest School of Medicine, the integrated clinical structure and consumer brand Wake Forest Baptist Health, which includes North Carolina Baptist Hospital and Brenner Children's Hospital, the creation and commercialization of research discoveries into products that benefit patients and improve health and wellness, through Wake Forest Innovations, Wake Forest Innovation Quarter, a leading center of technological discovery, development and commercialization, as well as a network of affiliated community-based hospitals, physician practices, outpatient services and other medical facilities. Wake Forest School of Medicine is ranked among the nation's best medical schools and is a leading national research center in fields such as regenerative medicine, cancer, neuroscience, aging, addiction and public health sciences. Wake Forest Baptist's clinical programs have consistently ranked as among the best in the country by U.S .News & World Report for the past 20 years.

Karen Richardson | EurekAlert!
Further information:
http://www.wakehealth.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>