Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers use brain injury data to map intelligence in the brain

11.04.2012
Scientists report that they have mapped the physical architecture of intelligence in the brain. Theirs is one of the largest and most comprehensive analyses so far of the brain structures vital to general intelligence and to specific aspects of intellectual functioning, such as verbal comprehension and working memory.

Their study, published in Brain: A Journal of Neurology, is unique in that it enlisted an extraordinary pool of volunteer participants: 182 Vietnam veterans with highly localized brain damage from penetrating head injuries.

“It’s a significant challenge to find patients (for research) who have brain damage, and even further, it’s very hard to find patients who have focal brain damage,” said University of Illinois neuroscience professor Aron Barbey, who led the study. Brain damage – from stroke, for example – often impairs multiple brain areas, he said, complicating the task of identifying the cognitive contributions of specific brain structures.

But the very focal brain injuries analyzed in the study allowed the researchers “to draw inferences about how specific brain structures are necessary for performance,” Barbey said. “By studying how damage to particular brain regions produces specific forms of cognitive impairment, we can map the architecture of the mind, identifying brain structures that are critically important for specific intellectual abilities.”

The researchers took CT scans of the participants’ brains and administered an extensive battery of cognitive tests. They pooled the CT data to produce a collective map of the cortex, which they divided into more than 3,000 three-dimensional units called voxels. By analyzing multiple patients with damage to a particular voxel or cluster of voxels and comparing their cognitive abilities with those of patients in whom the same structures were intact, the researchers were able to identify brain regions essential to specific cognitive functions, and those structures that contribute significantly to intelligence.

“We found that general intelligence depends on a remarkably circumscribed neural system,” Barbey said. “Several brain regions, and the connections between them, were most important for general intelligence.”

These structures are located primarily within the left prefrontal cortex (behind the forehead), left temporal cortex (behind the ear) and left parietal cortex (at the top rear of the head) and in “white matter association tracts” that connect them. (Watch a video about the findings.)

The researchers also found that brain regions for planning, self-control and other aspects of executive function overlap to a significant extent with regions vital to general intelligence.

The study provides new evidence that intelligence relies not on one brain region or even the brain as a whole, Barbey said, but involves specific brain areas working together in a coordinated fashion.

“In fact, the particular regions and connections we found support an emerging body of neuroscience evidence indicating that intelligence depends on the brain’s ability to integrate information from verbal, visual, spatial and executive processes,” he said.

The findings will “open the door to further investigations into the biological basis of intelligence, exploring how the brain, genes, nutrition and the environment together interact to shape the development and continued evolution of the remarkable intellectual abilities that make us human,” Barbey said.

The research team also included scientists from Universidad Autónoma de Madrid; Medical Numerics, in Germantown, Md.; George Mason University; the University of Delaware; and the Kessler Foundation, in West Orange, N.J.

Barbey also is a professor of psychology and of speech and hearing science, an affiliate of the Beckman Institute, and the director of the Decision Neuroscience Laboratory at Illinois.

The U.S. National Institute of Neurological Disorders and Stroke at the National Institutes of Health provided funding for this research.

Editor’s notes: To reach Aron Barbey, call 217-333-2230;
email barbey@illinois.edu.
The paper, “An Integrative Architecture for General Intelligence and
Executive Function Revealed by Lesion Mapping,” is available online
and from the U. of I. News Bureau.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>