Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Boost Production of Biofuel that Could Replace Gasoline

20.08.2009
Engineers at Ohio State University have found a way to double the production of the biofuel butanol, which might someday replace gasoline in automobiles.

The process improves on the conventional method for brewing butanol in a bacterial fermentation tank.

Normally, bacteria could only produce a certain amount of butanol -- perhaps 15 grams of the chemical for every liter of water in the tank -- before the tank would become too toxic for the bacteria to survive, explained Shang-Tian Yang, professor of chemical and biomolecular engineering at Ohio State.

Yang and his colleagues developed a mutant strain of the bacterium Clostridium beijerinckii in a bioreactor containing bundles of polyester fibers. In that environment, the mutant bacteria produced up to 30 grams of butanol per liter.

The researchers reported their results at the American Chemical Society meeting Wednesday in Washington, DC.

Right now, butanol is mainly used as a solvent, or in industrial processes that make other chemicals. But experts believe that this form of alcohol holds potential as a biofuel.

Once developed as a fuel, butanol could potentially be used in conventional automobiles in place of gasoline, while producing more energy than another alternative fuel, ethanol.

Yang said that this use of his patented fibrous-bed bioreactor would ultimately save money.

“Today, the recovery and purification of butanol account for about 40 percent of the total production cost,” explained Yang, “Because we are able to create butanol at higher concentrations, we believe we can lower those recovery and purification costs and make biofuel production more economical.”

Currently, a gallon of butanol costs approximately $3.00 -- a little more than the current price for a gallon of gasoline.

The engineers are applying for a patent on the mutant bacterium and the butanol production methodology, and will work with industry to develop the technology.

This research is funded by the Ohio Department of Development.

Contact: Shang-Tian Yang, (614) 292-6611; Yang.15@osu.edu

Pam Frost Gorder | Newswise Science News
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>