Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Boost Production of Biofuel that Could Replace Gasoline

20.08.2009
Engineers at Ohio State University have found a way to double the production of the biofuel butanol, which might someday replace gasoline in automobiles.

The process improves on the conventional method for brewing butanol in a bacterial fermentation tank.

Normally, bacteria could only produce a certain amount of butanol -- perhaps 15 grams of the chemical for every liter of water in the tank -- before the tank would become too toxic for the bacteria to survive, explained Shang-Tian Yang, professor of chemical and biomolecular engineering at Ohio State.

Yang and his colleagues developed a mutant strain of the bacterium Clostridium beijerinckii in a bioreactor containing bundles of polyester fibers. In that environment, the mutant bacteria produced up to 30 grams of butanol per liter.

The researchers reported their results at the American Chemical Society meeting Wednesday in Washington, DC.

Right now, butanol is mainly used as a solvent, or in industrial processes that make other chemicals. But experts believe that this form of alcohol holds potential as a biofuel.

Once developed as a fuel, butanol could potentially be used in conventional automobiles in place of gasoline, while producing more energy than another alternative fuel, ethanol.

Yang said that this use of his patented fibrous-bed bioreactor would ultimately save money.

“Today, the recovery and purification of butanol account for about 40 percent of the total production cost,” explained Yang, “Because we are able to create butanol at higher concentrations, we believe we can lower those recovery and purification costs and make biofuel production more economical.”

Currently, a gallon of butanol costs approximately $3.00 -- a little more than the current price for a gallon of gasoline.

The engineers are applying for a patent on the mutant bacterium and the butanol production methodology, and will work with industry to develop the technology.

This research is funded by the Ohio Department of Development.

Contact: Shang-Tian Yang, (614) 292-6611; Yang.15@osu.edu

Pam Frost Gorder | Newswise Science News
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>