Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Boost Production of Biofuel that Could Replace Gasoline

20.08.2009
Engineers at Ohio State University have found a way to double the production of the biofuel butanol, which might someday replace gasoline in automobiles.

The process improves on the conventional method for brewing butanol in a bacterial fermentation tank.

Normally, bacteria could only produce a certain amount of butanol -- perhaps 15 grams of the chemical for every liter of water in the tank -- before the tank would become too toxic for the bacteria to survive, explained Shang-Tian Yang, professor of chemical and biomolecular engineering at Ohio State.

Yang and his colleagues developed a mutant strain of the bacterium Clostridium beijerinckii in a bioreactor containing bundles of polyester fibers. In that environment, the mutant bacteria produced up to 30 grams of butanol per liter.

The researchers reported their results at the American Chemical Society meeting Wednesday in Washington, DC.

Right now, butanol is mainly used as a solvent, or in industrial processes that make other chemicals. But experts believe that this form of alcohol holds potential as a biofuel.

Once developed as a fuel, butanol could potentially be used in conventional automobiles in place of gasoline, while producing more energy than another alternative fuel, ethanol.

Yang said that this use of his patented fibrous-bed bioreactor would ultimately save money.

“Today, the recovery and purification of butanol account for about 40 percent of the total production cost,” explained Yang, “Because we are able to create butanol at higher concentrations, we believe we can lower those recovery and purification costs and make biofuel production more economical.”

Currently, a gallon of butanol costs approximately $3.00 -- a little more than the current price for a gallon of gasoline.

The engineers are applying for a patent on the mutant bacterium and the butanol production methodology, and will work with industry to develop the technology.

This research is funded by the Ohio Department of Development.

Contact: Shang-Tian Yang, (614) 292-6611; Yang.15@osu.edu

Pam Frost Gorder | Newswise Science News
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>