Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers boost insect aggression by altering brain metabolism

06.08.2014

Scientists report they can crank up insect aggression simply by interfering with a basic metabolic pathway in the insect brain. Their study, of fruit flies and honey bees, shows a direct, causal link between brain metabolism (how the brain generates the energy it needs to function) and aggression. The team reports its findings in the Proceedings of the National Academy of Sciences.

The new research follows up on previous work from the laboratory of University of Illinois entomology professor and Institute for Genomic Biology director Gene Robinson, who also led the new analysis. When he and his colleagues looked at brain gene activity in honey bees after they had faced down an intruder, the team found that some metabolic genes were suppressed. These genes play a key role in the most efficient type of energy generation in cells, a process called oxidative phosphorylation.

Honey Bee Aggression

Some insects are more aggressive than others in response to an intruder. Watch a video of honey bees responding to an intruder bee. (See link in news release.)

Credit: Jon Sullivan

"It was a counterintuitive finding because these genes were down-regulated," Robinson said. "You tend to think of aggression as requiring more energy, not less."

In the new study, postdoctoral researcher Clare Rittschof used drugs to suppress key steps in oxidative phosphorylation in the bee brains. She saw that aggression increased in the drugged bees in a dose-responsive manner, Robinson said. But the drugs had no effect on chronically stressed bees – they were not able to increase their aggression in response to an intruder. (Watch a video of honey bees responding to an intruder.)

... more about:
»drugs »flies »genes »insect »intruder »metabolism »phosphorylation »skin »steps

"Something about chronic stress changed their response to the drug, which is a fascinating finding in and of itself," Robinson said. "We want to know just how this experience gets under their skin to affect their brain."

In separate experiments, postdoctoral researcher Hongmei Li-Byarlay and undergraduate student Jonathan Massey found that reduced oxidative phosphorylation in fruit flies also increased aggression. Using advanced fly genetics, the team found this effect only when oxidative phosphorylation was reduced in neurons, but not in neighboring cells known as glia. This result, too, was surprising, since "glia are metabolically very active, and are the energy storehouses of the brain," Robinson said.

The findings offer insight into the immediate and longer-term changes that occur in response to threats, Robinson said.

"When an animal faces a threat, it has an immediate aggressive response, within seconds," Robinson said. But changes in brain metabolism take much longer and cannot account for this immediate response, he said. Such changes likely make individuals more vigilant to subsequent threats.

"This makes good sense in an ecological sense," Robinson said, "because threats often come in bunches."

The fact that the researchers observed these effects in two species that diverged 300 million years ago makes the findings even more compelling, Robinson said.

"Because fruit flies and honey bees are separated by 300 million years of evolution, this is a very robust and well-conserved mechanism," he said.

###

The National Science Foundation supported this work.

Editor's notes: To reach Gene Robinson, call 217-265-0309; email generobi@illinois.edu.

The paper, "Socially responsive effects of brain oxidative metabolism on aggression," is available online or from the U. of I. News Bureau.

Diana Yates | University of Illinois at Urbana-Champaign
Further information:
http://illinois.edu/

Further reports about: drugs flies genes insect intruder metabolism phosphorylation skin steps

More articles from Life Sciences:

nachricht A cell senses its own curves: New research from the MBL Whitman Center
29.04.2016 | Marine Biological Laboratory

nachricht A New Discovery in the Fight against Cancer: Tumor Cells Switch to a Different Mode
29.04.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>