Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers boost insect aggression by altering brain metabolism


Scientists report they can crank up insect aggression simply by interfering with a basic metabolic pathway in the insect brain. Their study, of fruit flies and honey bees, shows a direct, causal link between brain metabolism (how the brain generates the energy it needs to function) and aggression. The team reports its findings in the Proceedings of the National Academy of Sciences.

The new research follows up on previous work from the laboratory of University of Illinois entomology professor and Institute for Genomic Biology director Gene Robinson, who also led the new analysis. When he and his colleagues looked at brain gene activity in honey bees after they had faced down an intruder, the team found that some metabolic genes were suppressed. These genes play a key role in the most efficient type of energy generation in cells, a process called oxidative phosphorylation.

Honey Bee Aggression

Some insects are more aggressive than others in response to an intruder. Watch a video of honey bees responding to an intruder bee. (See link in news release.)

Credit: Jon Sullivan

"It was a counterintuitive finding because these genes were down-regulated," Robinson said. "You tend to think of aggression as requiring more energy, not less."

In the new study, postdoctoral researcher Clare Rittschof used drugs to suppress key steps in oxidative phosphorylation in the bee brains. She saw that aggression increased in the drugged bees in a dose-responsive manner, Robinson said. But the drugs had no effect on chronically stressed bees – they were not able to increase their aggression in response to an intruder. (Watch a video of honey bees responding to an intruder.)

... more about:
»drugs »flies »genes »insect »intruder »metabolism »phosphorylation »skin »steps

"Something about chronic stress changed their response to the drug, which is a fascinating finding in and of itself," Robinson said. "We want to know just how this experience gets under their skin to affect their brain."

In separate experiments, postdoctoral researcher Hongmei Li-Byarlay and undergraduate student Jonathan Massey found that reduced oxidative phosphorylation in fruit flies also increased aggression. Using advanced fly genetics, the team found this effect only when oxidative phosphorylation was reduced in neurons, but not in neighboring cells known as glia. This result, too, was surprising, since "glia are metabolically very active, and are the energy storehouses of the brain," Robinson said.

The findings offer insight into the immediate and longer-term changes that occur in response to threats, Robinson said.

"When an animal faces a threat, it has an immediate aggressive response, within seconds," Robinson said. But changes in brain metabolism take much longer and cannot account for this immediate response, he said. Such changes likely make individuals more vigilant to subsequent threats.

"This makes good sense in an ecological sense," Robinson said, "because threats often come in bunches."

The fact that the researchers observed these effects in two species that diverged 300 million years ago makes the findings even more compelling, Robinson said.

"Because fruit flies and honey bees are separated by 300 million years of evolution, this is a very robust and well-conserved mechanism," he said.


The National Science Foundation supported this work.

Editor's notes: To reach Gene Robinson, call 217-265-0309; email

The paper, "Socially responsive effects of brain oxidative metabolism on aggression," is available online or from the U. of I. News Bureau.

Diana Yates | University of Illinois at Urbana-Champaign
Further information:

Further reports about: drugs flies genes insect intruder metabolism phosphorylation skin steps

More articles from Life Sciences:

nachricht Understanding a missing link in how antidepressants work
25.11.2015 | Max Planck Institute of Psychiatry, München

nachricht Plant Defense as a Biotech Tool
25.11.2015 | Austrian Centre of Industrial Biotechnology (ACIB)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

Im Focus: Climate Change: Warm water is mixing up life in the Arctic

AWI researchers’ unique 15-year observation series reveals how sensitive marine ecosystems in polar regions are to change

The warming of arctic waters in the wake of climate change is likely to produce radical changes in the marine habitats of the High North. This is indicated by...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Harnessing a peptide holds promise for increasing crop yields without more fertilizer

25.11.2015 | Agricultural and Forestry Science

Earth's magnetic field is not about to flip

25.11.2015 | Earth Sciences

Tracking down the 'missing' carbon from the Martian atmosphere

25.11.2015 | Physics and Astronomy

More VideoLinks >>>