Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Awarded $33.9 Million Grant to Study Enzyme Functions

21.05.2010
A team of researchers led by University of Illinois biochemistry professor John A. Gerlt has received a five-year, $33.9 million grant from the National Institutes of General Medical Sciences to study the functions of unknown enzymes.

The “glue grant” – so-called because it brings together multidisciplinary groups of investigators – was awarded to provide resources to tackle the “complex problems that are of central importance to biomedical science but are beyond the means of any one research group,” according to the NIGMS.

Gerlt’s team will develop a strategy for discovering the functions of unknown, or uncharacterized, enzymes discovered in genome-sequencing projects.

“Genome projects have taught us that many of nature’s enzymes have unknown functions that need to be discovered,” said Gerlt, an expert on the enolase superfamily of enzymes.

Enzymes are proteins that catalyze the chemical reactions required for life, and enable organisms to live in complex environments and adapt to a variety of conditions.

“We have sequences for more than 10 million proteins and we might know the specific functions of half of those,” Gerlt said. “But what do the other half do? If we knew their functions, imagine how we might use them to identify new drug targets or provide catalysts used in industry.”

Gerlt and co-researcher Patricia Babbitt, of the University of California at San Francisco, have led the way in developing a novel method to determine an uncharacterized protein’s function. Their approach uses computational methods to narrow the range of possible substrates for the enzyme.

Gerlt says this project is a potentially powerful way to exploit the sequence data that have not yet been deciphered; it also could provide a way to learn more about metabolic pathways crucial to all organisms.

For the glue grant, officially known as the Enzyme Function Initiative, Gerlt and Babbitt have assembled a team of researchers from several disciplines to determine the structure of an unknown enzyme and then, computationally, determine a “hit list” of possible substrates, numbering in the tens, rather than the thousands.

The team of researchers comprises scientists from the Albert Einstein College of Medicine, Boston University, Texas A&M University, the University of New Mexico, the University of Utah, the Vanderbilt University School of Medicine and the University of Virginia.

The team also includes a microbiology group led by John Cronan, a professor of microbiology at Illinois, and Jonathan Sweedler, a professor of chemistry at Illinois.

“This program gathers together an outstanding group of researchers who will use their expertise in enzymology, structural biology, computational modeling and bioinformatics to develop an approach to associate enzymatic functions with genes in thousands of organisms,” said Warren Jones, the chief of the biochemistry and biorelated chemistry branch in the division of pharmacology, physiology and biological chemistry at the NIGMS.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>