Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Awarded $33.9 Million Grant to Study Enzyme Functions

21.05.2010
A team of researchers led by University of Illinois biochemistry professor John A. Gerlt has received a five-year, $33.9 million grant from the National Institutes of General Medical Sciences to study the functions of unknown enzymes.

The “glue grant” – so-called because it brings together multidisciplinary groups of investigators – was awarded to provide resources to tackle the “complex problems that are of central importance to biomedical science but are beyond the means of any one research group,” according to the NIGMS.

Gerlt’s team will develop a strategy for discovering the functions of unknown, or uncharacterized, enzymes discovered in genome-sequencing projects.

“Genome projects have taught us that many of nature’s enzymes have unknown functions that need to be discovered,” said Gerlt, an expert on the enolase superfamily of enzymes.

Enzymes are proteins that catalyze the chemical reactions required for life, and enable organisms to live in complex environments and adapt to a variety of conditions.

“We have sequences for more than 10 million proteins and we might know the specific functions of half of those,” Gerlt said. “But what do the other half do? If we knew their functions, imagine how we might use them to identify new drug targets or provide catalysts used in industry.”

Gerlt and co-researcher Patricia Babbitt, of the University of California at San Francisco, have led the way in developing a novel method to determine an uncharacterized protein’s function. Their approach uses computational methods to narrow the range of possible substrates for the enzyme.

Gerlt says this project is a potentially powerful way to exploit the sequence data that have not yet been deciphered; it also could provide a way to learn more about metabolic pathways crucial to all organisms.

For the glue grant, officially known as the Enzyme Function Initiative, Gerlt and Babbitt have assembled a team of researchers from several disciplines to determine the structure of an unknown enzyme and then, computationally, determine a “hit list” of possible substrates, numbering in the tens, rather than the thousands.

The team of researchers comprises scientists from the Albert Einstein College of Medicine, Boston University, Texas A&M University, the University of New Mexico, the University of Utah, the Vanderbilt University School of Medicine and the University of Virginia.

The team also includes a microbiology group led by John Cronan, a professor of microbiology at Illinois, and Jonathan Sweedler, a professor of chemistry at Illinois.

“This program gathers together an outstanding group of researchers who will use their expertise in enzymology, structural biology, computational modeling and bioinformatics to develop an approach to associate enzymatic functions with genes in thousands of organisms,” said Warren Jones, the chief of the biochemistry and biorelated chemistry branch in the division of pharmacology, physiology and biological chemistry at the NIGMS.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>