Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers attempt to solve problems of antibiotic resistance and bee deaths in one

14.03.2012
The stomachs of wild honey bees are full of healthy lactic acid bacteria that can fight bacterial infections in both bees and humans.

A collaboration between researchers at three universities in Sweden – Lund University, the Swedish University of Agricultural Sciences and Karolinska Institutet – has produced findings that could be a step towards solving the problems of both bee deaths and antibiotic resistance.

The researchers have now published their results in the scientific journal PloS ONE and the legendary science photographer Professor Lennart Nilsson from Karolinska Institutet has illustrated the findings with his unique images.

Today, many people eat healthy lactic acid bacteria that are added to foods such as yogurt.

“In our previous studies, we have looked at honey bees in Sweden. What we have now found from our international studies is that, historically, people of all cultures have consumed the world’s greatest natural blend of healthy bacteria in the form of honey”, says Alejandra Vasquez, a researcher at Lund University.

In wild and fresh honey, which honey hunters collect from bees’ nests in high cliffs and trees, there are billions of healthy lactic acid bacteria of 13 different types. This is in comparison with the 1–3 different types found in commercial probiotic products, she explains.

The honey bees have used these bacteria for 80 million years to produce and protect their honey and their bee bread (bee pollen), which they produce to feed the entire bee colony. The researchers have now also shown that the healthy lactic acid bacteria combat the two most serious bacterial diseases to affect honey bees.

In the journal article, the researchers describe how the bees have these healthy bacteria in their honey stomachs and that they get the bacteria as newborns from the adult bees that feed them. The researchers have also seen that large quantities of harmful microorganisms such as bacteria, yeasts and fungi are found in the nectar and pollen that the bees collect from flowers to make honey and bee bread. These microorganisms could destroy the food through fermentation and mould in just a couple of hours, but in fact, the healthy bacteria in the honey stomach kill all the microorganisms.

“As humans have learnt to use honey to treat sore throats, colds and wounds, our hypothesis is that the healthy bee bacteria can also kill harmful disease bacteria in humans. We have preliminary, unpublished results which show that this could be a new tool to complement or even replace antibiotics”, says Alejandra Vasquez.

The present study also shows that bees’ healthy bacteria die when beekeepers treat bees preventively with antibiotics, which primarily happens in the USA. The bees have their own defence system against disease in the form of cooperative healthy bacteria. However, this system is weakened in commercially farmed bees that are treated with antibiotics, suffer stress, eat synthetic food instead of their own honey and bee bread and are forced to fly in fields sprayed with pesticides.

“Our results provide the research community with an undiscovered key that could explain why bees are dying worldwide in the mysterious ‘colony collapse disorder’”, says Tobias Olofsson.

Researchers at Lund University:
Dr Alejandra Vásquez, email: alejandra.vasquez@med.lu.se, mobile: +46 705 898089
Dr Tobias Olofsson, email: tobias.olofsson@med.lu.se, mobile: +46 706 837683

Helga Ekdahl Heun | idw
Further information:
http://www.lu.se
http://dx.plos.org/10.1371/journal.pone.003318

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>