Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at LSTM crack the genetic secret of mosquito resistance to DDT and ITNs

25.02.2014
Paper shows a single genetic mutation causes resistance to both

Researchers from LSTM have found that a single genetic mutation causes resistance to DDT and pyrethroids (an insecticide class used in mosquito nets). With the continuing rise of resistance the research, published in the journal Genome Biology, is key as scientists say that this knowledge could help improve malaria control strategies.

The researchers, led by Dr Charles Wondji, used a wide range of methods to narrow down how the resistance works, finding a single mutation in the GSTe2 gene, which makes insects break down DDT so it's no longer toxic. They have also shown that this gene makes insects resistant to pyrethroids raising the concern that GSTe2 gene could protect mosquitoes against the major insecticides used in public health.

Mosquitoes (Anopheles funestus) are vectors of malaria, and most strategies for combating the spread of the disease focus on control of mosquito populations using insecticides. The spread of resistance genes could hold back efforts to prevent the disease. The authors say that knowing how resistance works will help to develop tests, and stop these genes from spreading amongst mosquito populations.

Charles Wondji said: 'We found a population of mosquitoes fully resistant to DDT (no mortality when they were treated with DDT) but also to pyrethroids. So we wanted to elucidate the molecular basis of that resistance in the population and design a field applicable diagnostic assay for its monitoring.'

They took mosquitoes from Pahou in Benin, which were resistant to DDT and pyrethroids, and mosquitoes from a laboratory fully susceptible strain and did a genome wide comparison study. They identified the GSTe2 gene as being upregulated - producing a lot of protein - in Benin mosquitoes.

They found that a single mutation (L119F) changed a non-resistant version of the GSTe2 gene to a DDT resistant version. They designed a DNA-based diagnostic test for this type of resistance (metabolic resistance) and confirmed that this mutation was found in mosquitoes from other areas of the world with DDT resistance but was completely absent in regions without. X-ray crystallography of the protein coded by the gene illustrated exactly how the mutation conferred resistance, by opening up the 'active site' where DDT molecules bind to the protein, so more can be broken down. This means that the mosquito can survive by breaking down the poison into non-toxic substances.

They also introduced the gene into fruit flies (Drosophila melanogaster) and found they became resistant to DDT and pyrethroids compared to controls, confirming that just this single mutation is enough to make mosquitoes resistant to both DDT and permethrin.

Wondji says: 'For the first time, we have been able to identify a molecular marker for metabolic resistance (the type of resistance most likely to lead to control failure) in a mosquito population and to design a DNA-based diagnostic assay. Such tools will allow control programs to detect and track resistance at an early stage in the field, which is an essential requirement to successfully tackle the growing problem of insecticide resistance in vector control. This significant progress opens the door for us to do this with other forms of resistance as well and in other vector species.'

Notes to Editors

1. A single mutation in the GSTe2 gene allows tracking of metabolically-based insecticide resistance in a major malaria vector
Riveron J M, Yunta C, Ibrahim S S, Djouaka R, Irving H, Menze B D, Ismail H M, Hemingway J, Ranson H, Albert A and Wondji C S Genome Biology 2014, 15:R27

During embargo, article available here: https://www.dropbox.com/sh/15nai29eftd2wuu/o0ipj1bh42

After embargo, article available at journal website here: http://genomebiology.com/2014/15/2/R27

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

For further information, please contact:

Mrs Clare Bebb
Senior Media Officer
Liverpool School of Tropical Medicine
Office: +44 (0)151 705 3135
Mobile: +44 (0)7889535222
Email: c.bebb@liv.ac.uk

Liverpool School of Tropical Medicine (LSTM) has been engaged in the fight against infectious, debilitating and disabling diseases since 1898 and continues that tradition today with a research portfolio in excess of well over £200 million and a teaching programme attracting students from over 65 countries.

For further information, please visit: http://www.lstmliverpool.ac.uk

Clare Bebb | EurekAlert!

Further reports about: DDT ITNs LSTM Medicine insecticide insects mosquito pyrethroids resistance strategies vector

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>