Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers at LSTM crack the genetic secret of mosquito resistance to DDT and ITNs

Paper shows a single genetic mutation causes resistance to both

Researchers from LSTM have found that a single genetic mutation causes resistance to DDT and pyrethroids (an insecticide class used in mosquito nets). With the continuing rise of resistance the research, published in the journal Genome Biology, is key as scientists say that this knowledge could help improve malaria control strategies.

The researchers, led by Dr Charles Wondji, used a wide range of methods to narrow down how the resistance works, finding a single mutation in the GSTe2 gene, which makes insects break down DDT so it's no longer toxic. They have also shown that this gene makes insects resistant to pyrethroids raising the concern that GSTe2 gene could protect mosquitoes against the major insecticides used in public health.

Mosquitoes (Anopheles funestus) are vectors of malaria, and most strategies for combating the spread of the disease focus on control of mosquito populations using insecticides. The spread of resistance genes could hold back efforts to prevent the disease. The authors say that knowing how resistance works will help to develop tests, and stop these genes from spreading amongst mosquito populations.

Charles Wondji said: 'We found a population of mosquitoes fully resistant to DDT (no mortality when they were treated with DDT) but also to pyrethroids. So we wanted to elucidate the molecular basis of that resistance in the population and design a field applicable diagnostic assay for its monitoring.'

They took mosquitoes from Pahou in Benin, which were resistant to DDT and pyrethroids, and mosquitoes from a laboratory fully susceptible strain and did a genome wide comparison study. They identified the GSTe2 gene as being upregulated - producing a lot of protein - in Benin mosquitoes.

They found that a single mutation (L119F) changed a non-resistant version of the GSTe2 gene to a DDT resistant version. They designed a DNA-based diagnostic test for this type of resistance (metabolic resistance) and confirmed that this mutation was found in mosquitoes from other areas of the world with DDT resistance but was completely absent in regions without. X-ray crystallography of the protein coded by the gene illustrated exactly how the mutation conferred resistance, by opening up the 'active site' where DDT molecules bind to the protein, so more can be broken down. This means that the mosquito can survive by breaking down the poison into non-toxic substances.

They also introduced the gene into fruit flies (Drosophila melanogaster) and found they became resistant to DDT and pyrethroids compared to controls, confirming that just this single mutation is enough to make mosquitoes resistant to both DDT and permethrin.

Wondji says: 'For the first time, we have been able to identify a molecular marker for metabolic resistance (the type of resistance most likely to lead to control failure) in a mosquito population and to design a DNA-based diagnostic assay. Such tools will allow control programs to detect and track resistance at an early stage in the field, which is an essential requirement to successfully tackle the growing problem of insecticide resistance in vector control. This significant progress opens the door for us to do this with other forms of resistance as well and in other vector species.'

Notes to Editors

1. A single mutation in the GSTe2 gene allows tracking of metabolically-based insecticide resistance in a major malaria vector
Riveron J M, Yunta C, Ibrahim S S, Djouaka R, Irving H, Menze B D, Ismail H M, Hemingway J, Ranson H, Albert A and Wondji C S Genome Biology 2014, 15:R27

During embargo, article available here:

After embargo, article available at journal website here:

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

For further information, please contact:

Mrs Clare Bebb
Senior Media Officer
Liverpool School of Tropical Medicine
Office: +44 (0)151 705 3135
Mobile: +44 (0)7889535222

Liverpool School of Tropical Medicine (LSTM) has been engaged in the fight against infectious, debilitating and disabling diseases since 1898 and continues that tradition today with a research portfolio in excess of well over £200 million and a teaching programme attracting students from over 65 countries.

For further information, please visit:

Clare Bebb | EurekAlert!

Further reports about: DDT ITNs LSTM Medicine insecticide insects mosquito pyrethroids resistance strategies vector

More articles from Life Sciences:

nachricht Two decades of training students and experts in tracking infectious disease
27.11.2015 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Increased carbon dioxide enhances plankton growth, opposite of what was expected
27.11.2015 | Bigelow Laboratory for Ocean Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>