Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Advance Understanding of Enzyme That Regulates DNA

23.08.2010
Thanks to a single-molecule imaging technique developed by a University of Illinois professor, researchers have revealed the mechanisms of an important DNA regulating enzyme.

Helicase enzymes are best known for “unzipping” DNA for replication, but have many other functions for DNA repair and maintenance. The Illinois team focused on a particular bacterial helicase called PcrA involved in preventing unwanted recombination.

A DNA double helix consists of two strands twisted around each other. When one strand is damaged or breaks, the surrounding area is degraded, leaving a single-stranded region. Specialized proteins then start the process of recombination – rebuilding the second strand using the intact DNA as a template.

“Recombination is essential for DNA repair, but if it runs amok, it causes problems,” said U. of I. physics professor Taekjip Ha. “This helicase controls recombination by removing recombination proteins from the DNA.”

Using a technique called single molecule fluorescence resonance energy transfer (FRET), Ha and his team were able to identify one of the mechanisms that PcrA uses to regulate recombination. The system uses two dyes that change in relative intensity depending on their proximities to one another. The researchers attached the two dyes to the opposite ends of the single-stranded DNA tail.

Helicases are motor proteins, a class of enzymes that use chemical energy to move along a DNA molecule like a train on a track. But using FRET, the researchers observed the two dyes gradually moving closer to each other, then flying apart, repeatedly. Instead of moving along the single-stranded tail, PcrA binds at the point of the break, where the double- and single-stranded regions meet. Then, it uses its motor function to “reel in” the tail, like a fisherman pulling in a rope.

“By combining the structure-specific binding of the enzyme to the DNA and the motor function, the enzyme can reel in the DNA and in the process kick off recombination proteins,” said Ha, who also is a Howard Hughes Medical Institute investigator.

When PcrA reaches the end of its DNA rope, it releases it and starts the reeling in process over again, removing any additional problematic proteins that have bound to the damaged DNA as it reels.

By using FRET, a technique Ha developed, the team also was able to answer another question about PcrA: How consistent is its motor function? Researchers agree that on average, PcrA moves one DNA unit, called a base pair, for each unit of cellular energy it uses, called ATP. But because researchers traditionally study the enzyme in relatively large samples, broad distributions of data have led to conflicting views on whether the helicase moves in uniform steps or those of varying lengths – even up to six base pairs per ATP.

Since FRET is a single-molecule technique, the researchers were able to document a single enzyme’s function, step by step, and found that PcrA does, in fact, move in uniform steps of one base pair per ATP.

Next, the team plans to create a reaction environment more similar to that in vivo, using three and four colors of FRET dyes to measure activities of multiple proteins simultaneously. They are also working toward understanding why helicase moves only in one direction.

“This is an ideal marriage of a new technology and an interesting biological problem,” Ha said.

The team published its findings in the Aug. 20 edition of the journal Cell. Team members included U. of I. graduate students Jeehae Park and Kyung Suk Lee; bioengineering professor Sua Myong; Anita Niedziela-Majka and Timothy Lohman, of the Washington University School of Medicine in St. Louis; and Jin Yu, of the University of California at Berkeley. The National Institutes of Health and the National Science Foundation supported this work.

Liz Ahlberg | University of Illinois
Further information:
http://www.illinois.edu

Further reports about: ATP Advance DNA DNA repair FRET Illinois River Watershed PcrA Regulates Researchers enzyme

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>