Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Advance Understanding of Enzyme That Regulates DNA

23.08.2010
Thanks to a single-molecule imaging technique developed by a University of Illinois professor, researchers have revealed the mechanisms of an important DNA regulating enzyme.

Helicase enzymes are best known for “unzipping” DNA for replication, but have many other functions for DNA repair and maintenance. The Illinois team focused on a particular bacterial helicase called PcrA involved in preventing unwanted recombination.

A DNA double helix consists of two strands twisted around each other. When one strand is damaged or breaks, the surrounding area is degraded, leaving a single-stranded region. Specialized proteins then start the process of recombination – rebuilding the second strand using the intact DNA as a template.

“Recombination is essential for DNA repair, but if it runs amok, it causes problems,” said U. of I. physics professor Taekjip Ha. “This helicase controls recombination by removing recombination proteins from the DNA.”

Using a technique called single molecule fluorescence resonance energy transfer (FRET), Ha and his team were able to identify one of the mechanisms that PcrA uses to regulate recombination. The system uses two dyes that change in relative intensity depending on their proximities to one another. The researchers attached the two dyes to the opposite ends of the single-stranded DNA tail.

Helicases are motor proteins, a class of enzymes that use chemical energy to move along a DNA molecule like a train on a track. But using FRET, the researchers observed the two dyes gradually moving closer to each other, then flying apart, repeatedly. Instead of moving along the single-stranded tail, PcrA binds at the point of the break, where the double- and single-stranded regions meet. Then, it uses its motor function to “reel in” the tail, like a fisherman pulling in a rope.

“By combining the structure-specific binding of the enzyme to the DNA and the motor function, the enzyme can reel in the DNA and in the process kick off recombination proteins,” said Ha, who also is a Howard Hughes Medical Institute investigator.

When PcrA reaches the end of its DNA rope, it releases it and starts the reeling in process over again, removing any additional problematic proteins that have bound to the damaged DNA as it reels.

By using FRET, a technique Ha developed, the team also was able to answer another question about PcrA: How consistent is its motor function? Researchers agree that on average, PcrA moves one DNA unit, called a base pair, for each unit of cellular energy it uses, called ATP. But because researchers traditionally study the enzyme in relatively large samples, broad distributions of data have led to conflicting views on whether the helicase moves in uniform steps or those of varying lengths – even up to six base pairs per ATP.

Since FRET is a single-molecule technique, the researchers were able to document a single enzyme’s function, step by step, and found that PcrA does, in fact, move in uniform steps of one base pair per ATP.

Next, the team plans to create a reaction environment more similar to that in vivo, using three and four colors of FRET dyes to measure activities of multiple proteins simultaneously. They are also working toward understanding why helicase moves only in one direction.

“This is an ideal marriage of a new technology and an interesting biological problem,” Ha said.

The team published its findings in the Aug. 20 edition of the journal Cell. Team members included U. of I. graduate students Jeehae Park and Kyung Suk Lee; bioengineering professor Sua Myong; Anita Niedziela-Majka and Timothy Lohman, of the Washington University School of Medicine in St. Louis; and Jin Yu, of the University of California at Berkeley. The National Institutes of Health and the National Science Foundation supported this work.

Liz Ahlberg | University of Illinois
Further information:
http://www.illinois.edu

Further reports about: ATP Advance DNA DNA repair FRET Illinois River Watershed PcrA Regulates Researchers enzyme

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>