Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers activate repair program for nerve fibers

07.10.2016

Releasing molecular brake allowed damaged neurons to regenerate

Injuries to the spinal cord can cause paralysis and other permanent disabilities because severed nerve fibers do not regrow. Now, scientists of the German Center for Neurodegenerative Diseases (DZNE) have succeeded in releasing a molecular brake that prevents the regeneration of nerve connections.


DZNE scientists have identified a molecular brake that prevents the regeneration of nerve connections. To this end large sets of genomic data had to be analyzed. This is illustrated in the above figure. Image: DZNE/A. Tedeschi

Treatment of mice with “Pregabalin”, a drug that acts upon the growth inhibiting mechanism, caused damaged nerve connections to regenerate. Researchers led by neurobiologist Frank Bradke report on these findings in the journal “Neuron”.

Human nerve cells are interconnected in a network that extends to all parts of the body. In this way control signals are transmitted from head to toe, while sensory inputs flow in the opposite direction. For this to happen, impulses are passed from neuron to neuron, not unlike a relay race. Damages to this wiring system can have drastic consequences – particularly if they affect the brain or the spinal cord. This is because the cells of the central nervous system are connected by long projections. When severed, these projections, which are called “axons”, are unable to regrow.

Reawakening a lost talent

Neural pathways that have been injured can only regenerate if new connections arise between the affected cells. In a sense, the neurons have to stretch out their arms, i.e. the axons have to grow. In fact, this happens in the early stages of embryonic development. However, this ability disappears in the adult. Can it be reactivated? This was the question Professor Bradke and co-workers asked themselves. “We started from the hypothesis that neurons actively down-regulate their growth program once they have reached other cells, so that they don’t overshoot the mark. This means, there should be a braking mechanism that is triggered as soon as a neuron connects to others,” says Dr. Andrea Tedeschi, a member of the Bradke Lab and first author of the current publication.

Searching through the genome

In mice and cell cultures, the scientists started an extensive search for genes that regulate the growth of neurons. “That was like looking for the proverbial needle in the haystack. There are hundreds of active genes in every nerve cell, depending on its stage of development. To analyze the large data set we heavily relied on bioinformatics. To this end, we cooperated closely with colleagues at the University of Bonn,” says Bradke. “Ultimately, we were able to identify a promising candidate. This gene, known as Cacna2d2, plays an important role in synapse formation and function, in other words in bridging the final gap between nerve cells.” During further experiments, the researchers modified the gene’s activity, e.g. by deactivating it. In this way, they were able to prove that Cacna2d2 does actually influence axonal growth and the regeneration of nerve fibers.

Pregabalin triggered neuronal growth

Cacna2d2 encodes the blueprint of a protein that is part of a larger molecular complex. The protein anchors ion channels in the cell membrane that regulate the flow of calcium particles into the cell. Calcium levels affect cellular processes such as the release of neurotransmitters. These ion channels are therefore essential for the communication between neurons.

In further investigations, the researchers used Pregabalin (PGB), a drug that had long been known to bind to the molecular anchors of calcium channels. Over a period of several weeks, they administered PGB to mice with spinal cord injuries. As it turned out, this treatment caused new nerve connections to grow.

“Our study shows that synapse formation acts as a powerful switch that restrains axonal growth. A clinically-relevant drug can manipulate this effect,” says Bradke. In fact, PGB is already being used to treat lesions of the spinal cord, albeit it is applied as a pain killer and relatively late after the injury has occurred. “PGB might have a regenerative effect in patients, if it is given soon enough. In the long term this could lead to a new treatment approach. However, we don’t know yet.”

A new mechanism?

In previous studies, the DZNE researchers showed that certain cancer drugs can also cause damaged nerve connections to regrow. The main protagonists in this process are the “microtubules”, long protein complexes that stabilize the cell body. When the microtubules grow, axons do as well. Is there a connection between the different findings? “We don’t know whether these mechanisms are independent or whether they are somehow related,” says Bradke. “This is something we want to examine more closely in the future.”

Original Publication
„The Calcium Channel Subunit Alpha2delta2 Suppresses Axon Regeneration in the Adult CNS“, Andrea Tedeschi, Sebastian Dupraz, Claudia J. Laskowski, Jia Xue, Thomas Ulas, Marc Beyer, Joachim L. Schultze, Frank Bradke, Neuron, DOI: http://dx.doi.org/10.1016/j.neuron.2016.09.026

Weitere Informationen:

https://www.dzne.de/en/about-us/public-relations/news/2016/press-release-no-16.h...

Dr. Marcus Neitzert | idw - Informationsdienst Wissenschaft

Further reports about: DZNE nerve cells nerve fibers neurons spinal spinal cord synapse formation

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>