Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers 'grow Rett syndrome' in a Petri dish

A groundbreaking study published Friday in the leading scientific journal, Cell, revealed that a team of investigators had successfully generated nerve cells using skin cells from four individuals with Rett syndrome. The study, funded in part by IRSF, was led by Dr. Alysson Muotri at the University of California, San Diego--a leading researcher in the stem cell field.

The article, titled 'A Model for Neural Development and Treatment of Rett Syndrome Using Human Induced Pluripotent Stem Cells,' describes how the team used a newly-devised procedure to reprogram the skins cells - literally winding back their developmental clock to an earlier state and transforming them into stem cells.

The researchers then employed a second novel technique, taking the newly-formed stem cells and driving them along a developmental path to form nerve cells. When Dr. Muotri and his team examined these new nerve cells closely, they observed characteristic hallmarks of nerve cells with Rett syndrome, including fewer synapses, smaller cell bodies and changes in the cells' signaling capabilities. The group then took their work a step further; testing several drugs previously shown to be effective in mouse models of Rett syndrome, they provided evidence of functional rescue, using human cells. In 1999, the laboratory of Dr. Huda Zoghbi at Baylor College of Medicine, made a seminal discovery, identifying a causative link between mutations in the gene methyl-CpG-binding protein 2 (MeCP2) and Rett syndrome.

This led to further work showing the MeCP2 protein is critical for the proper functioning of nerve cells. In 2007 another study in the laboratory of Dr. Adrian Bird at the University of Edinburgh, Scotland showed that restoration of MeCP2 function in a mouse model of the disease reverses the neurological symptoms in adult mice. This finding provided a critical proof of concept that symptoms of the disorder may be reversible in humans. However, to date, no effective pharmacological treatments have been developed.

The main limitation for human studies and thus, drug development, has been the inaccessibility of live neurons from human patients. To get around this issue, the use of induced pluripotent stem cells (iPSCs) to establish a human cell-based model of Rett syndrome is key to the development of high throughput drug screens and therefore has been an area of the highest priority for IRSF who provided a post-doctoral fellowship Award to Dr. Cassiano Carromeu, a member of the team and a co-author of the current study. The study's principal author, Dr. Alysson Muotri, said, "Dr. Bird's data shows that you can reverse symptoms in a mouse model, now we've shown that this could be done using human cells." "I think the future is to push this in a high throughput screening platform to develop new drugs," he continued.

IRSF recently provided funding to support a new program for Rett syndrome-specific drug development, titled the "Selected Molecular Agents for Rett Therapeutics" (SMART) Initiative. The SMART Initiative will assemble a collection of brain-specific drugs that target select biological mechanisms important in RTT and make the compound collection available to researchers worldwide. IRSF's Chief Scientific Officer, Dr. Antony Horton said "IRSF has been proactive in moving iPSC technology forward for the purpose of drug screening, which is aligned well with the new SMART Initiative." "With the publication of this study, a major hurdle has been overcome in our quest to develop and test new medicines for the benefit of people living with Rett syndrome." added Dr. Horton.

About Rett Syndrome (RTT)

Rett syndrome is a developmental neurological disorder, occurs almost exclusively in females. RTT results in severe movement and communication problems following apparently normal development for the first six months of life. Characteristic features of the disease include loss of speech and purposeful hand use, repetitive hand movements, abnormal walking, abnormal breathing, slowing in the rate of head growth and increased risk of seizures. Current treatment for girls with RTT includes physical and occupational therapy, speech therapy, and medication for seizures. There is no known cure for RTT. In 2007, researchers heralded a major breakthrough by reversing RTT symptoms in mouse models. RTT is considered a "Rosetta Stone" that is helping scientists understand multiple developmental neurological disorders, and shares genetic links with other conditions such as autism and schizophrenia.

About the International Rett Syndrome Foundation

IRSF is the world's leading private funder of basic, translational and clinical Rett syndrome research, funding over $24M in high-quality, peer-reviewed research grants and programs to date. Annually, IRSF hosts the world's largest gathering of global Rett researchers and clinicians to establish research direction and priorities while exchanging ideas and the most recent information. IRSF is the most comprehensive non-profit organization dedicated to providing thorough and accurate information about Rett syndrome, offering informational and emotional family support, and stimulating research aimed at accelerating treatments and a cure for Rett syndrome and related disorders. IRSF has earned Charity Navigator's most prestigious 4 star rating. To learn more about IRSF and Rett syndrome, visit or call IRSF at 1-800-818-RETT (7388).

About the University of California, San Diego

Founded in 1960, the University of California, San Diego is one of the nation's most accomplished research universities, widely acknowledged for its local impact, national influence and global reach. UC San Diego is renowned for its collaborative, diverse and cross-disciplinary ethos that transcends traditional boundaries in science, arts and the humanities. The university's award-winning scholars are experts at the forefront of their fields with an impressive track record for achieving scientific, medical and technological breakthroughs. A leader in climate science research, UC San Diego is one of the greenest universities in the nation and promotes sustainability solutions throughout the region and the world.

Stephen Bajardi | EurekAlert!
Further information:

Further reports about: IRSF MECP2 Muotri RTT Rett syndrome Smart Syndrome biological mechanism human cell mouse model nerve cell stem cells

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>