Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher tricks immune system in diabetic mice

24.11.2008
New strategy eliminates need for toxic drugs in islet transplant

The body's immune system hates strangers. When its security patrol spots a foreign cell, it annihilates it.

This is the problem when people with type 1 diabetes undergo human islet cell transplantation. The islet cells from a donor pancreas produce robust amounts of insulin for the recipient -- often permitting independence from insulin therapy. However, the immune system tries to kill the new hard-working islets.

A person who has the transplant procedure must take powerful immunosuppressive drugs to prevent their bodies from rejecting the cells. The drugs, however, are toxic to the new islet cells and put patients at risk for infections and cancer.

Now researchers at Northwestern University's Feinberg School of Medicine have found a way to trick the immune system of mice into believing those transplanted islets are its own cells. This new technique eliminated the need for the immunosuppressive drugs in mice with chemically-induced diabetes after they had islet transplantation.

"We made the recipient feel that the donor cells are their own," explained Stephen Miller, co-principal investigator and the Judy Gugenheim Research Professor of Microbiology-Immunology at the Feinberg School. "This technique is a highly attractive potential therapy for human islet cell transplantation." The findings were reported in the journal Proceedings of the National Academy of Science in the fall.

As many as 3 million people in the U.S. may have type 1 diabetes, a disease that develops in children and adolescents. There are about 50 to 70 islet transplants, an experimental procedure, annually in North America.

Miller said he was happily surprised to see that such a high percentage of recipients of the transplanted islet cells -- greater than 70 percent -- maintained transplants long-term. His research showed the host's tolerance to these transplanted cells seemed to be permanent, lasting for at least 150 days. Xunrong Luo, assistant professor of medicine in nephrology at the Feinberg School, was co-principal investigator for the study.

In the study, researchers took a type of white blood cell from the islet donor's spleen, called splenocytes, and treated them with a chemical that masked the cells' identity. They then injected these chemically treated cells into diabetic mice before and after the mice underwent islet cell transplantation. As a result, the immune system of the mice didn't try to reject the cells, because it didn't perceive them as foreign and dangerous.

When the same test was done without pre-treated cells, the immune system rejected the transplanted islets within 15 days.

In an upcoming study, Miller and Luo will work with mice that have autoimmune disease that destroys their islet cells, as occurs in type 1 diabetes. Researchers will use therapies that prevent the autoimmune system's response against its own beta cells (which are part of the islets) as well as prevent the recipient's immune responses against the transplanted islet cells.

"We have ways we can do both," Miller said. "Hopefully this next study will show we can take combined therapies for underlying autoimmune disease and transplanted islets. If we do that together, we hopefully can cure an animal who became diabetic from autoimmune disease." If successful, the next step would be testing the technique on human subjects.

Miller said this technique also has applications for treating other autoimmune diseases such as multiple sclerosis.

Marla Paul | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>