Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher tricks immune system in diabetic mice

24.11.2008
New strategy eliminates need for toxic drugs in islet transplant

The body's immune system hates strangers. When its security patrol spots a foreign cell, it annihilates it.

This is the problem when people with type 1 diabetes undergo human islet cell transplantation. The islet cells from a donor pancreas produce robust amounts of insulin for the recipient -- often permitting independence from insulin therapy. However, the immune system tries to kill the new hard-working islets.

A person who has the transplant procedure must take powerful immunosuppressive drugs to prevent their bodies from rejecting the cells. The drugs, however, are toxic to the new islet cells and put patients at risk for infections and cancer.

Now researchers at Northwestern University's Feinberg School of Medicine have found a way to trick the immune system of mice into believing those transplanted islets are its own cells. This new technique eliminated the need for the immunosuppressive drugs in mice with chemically-induced diabetes after they had islet transplantation.

"We made the recipient feel that the donor cells are their own," explained Stephen Miller, co-principal investigator and the Judy Gugenheim Research Professor of Microbiology-Immunology at the Feinberg School. "This technique is a highly attractive potential therapy for human islet cell transplantation." The findings were reported in the journal Proceedings of the National Academy of Science in the fall.

As many as 3 million people in the U.S. may have type 1 diabetes, a disease that develops in children and adolescents. There are about 50 to 70 islet transplants, an experimental procedure, annually in North America.

Miller said he was happily surprised to see that such a high percentage of recipients of the transplanted islet cells -- greater than 70 percent -- maintained transplants long-term. His research showed the host's tolerance to these transplanted cells seemed to be permanent, lasting for at least 150 days. Xunrong Luo, assistant professor of medicine in nephrology at the Feinberg School, was co-principal investigator for the study.

In the study, researchers took a type of white blood cell from the islet donor's spleen, called splenocytes, and treated them with a chemical that masked the cells' identity. They then injected these chemically treated cells into diabetic mice before and after the mice underwent islet cell transplantation. As a result, the immune system of the mice didn't try to reject the cells, because it didn't perceive them as foreign and dangerous.

When the same test was done without pre-treated cells, the immune system rejected the transplanted islets within 15 days.

In an upcoming study, Miller and Luo will work with mice that have autoimmune disease that destroys their islet cells, as occurs in type 1 diabetes. Researchers will use therapies that prevent the autoimmune system's response against its own beta cells (which are part of the islets) as well as prevent the recipient's immune responses against the transplanted islet cells.

"We have ways we can do both," Miller said. "Hopefully this next study will show we can take combined therapies for underlying autoimmune disease and transplanted islets. If we do that together, we hopefully can cure an animal who became diabetic from autoimmune disease." If successful, the next step would be testing the technique on human subjects.

Miller said this technique also has applications for treating other autoimmune diseases such as multiple sclerosis.

Marla Paul | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>