Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher: Study on Element Could Change Ballgame on Radioactive Waste

25.03.2014

Groundbreaking work by a team of chemists on a fringe element of the periodic table could change how the world stores radioactive waste and recycles fuel.

The element is called californium — Cf if you’re looking at the Periodic Table of Elements — and it’s what Florida State Professor Thomas Albrecht-Schmitt, the lead researcher on the project, calls “wicked stuff.”

In carefully choreographed experiments, Albrecht-Schmitt and his colleagues found that californium had amazing abilities to bond and separate other materials. They also found it was extremely resistant to radiation damage.

“It’s almost like snake oil,” he said. “It sounds almost too good to be true.”

Albrecht-Schmitt said that the discoveries could help scientists build new storage containers for radioactive waste, plus help separate radioactive fuel, which means the fuel could be recycled.

“This has real world application,” he said. “It’s not purely an academic practice.”

Albrecht-Schmitt’s work, “Unusual Structure, Bonding, and Properties in a Californium Borate,” appears published in the newest edition of Nature Chemistry.

But, running the experiments and collecting the data were not small tasks.

After years of working with the U.S. Department of Energy, Albrecht-Schmitt obtained 5 milligrams of californium costing $1.4 million, paid for through an endowment to the university in honor of retired professor Gregory Choppin.

But that tiny, expensive element has opened a whole new world of nuclear chemistry.

“We’re changing how people look at californium and how it can be used,” Albrecht-Schmitt said.

All of the experiments were conducted at Florida State, but Albrecht-Schmitt also worked with theorists and scientists from nine universities and institutes, including Oak Ridge National Laboratory, which supplied the californium.

David A. Dixon, professor of chemistry at the University of Alabama, and his graduate student, Ted Garner, provided the calculations and theory on why the californium could bond in such unique ways, while scientists at Argonne National Laboratory helped correlate the theory with the experiments. Evgeny Alekseev and Wulf Depmeier of Germany also provided an improved understanding on the atomic structure of californium.

Kathleen Haughney | newswise
Further information:
http://www.fsu.edu

Further reports about: Germany Laboratory Radioactive Waste collecting experiments structure tiny

More articles from Life Sciences:

nachricht New mechanisms uncovered explaining frost tolerance in plants
26.09.2016 | Technische Universität München

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>