Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher: Study on Element Could Change Ballgame on Radioactive Waste

25.03.2014

Groundbreaking work by a team of chemists on a fringe element of the periodic table could change how the world stores radioactive waste and recycles fuel.

The element is called californium — Cf if you’re looking at the Periodic Table of Elements — and it’s what Florida State Professor Thomas Albrecht-Schmitt, the lead researcher on the project, calls “wicked stuff.”

In carefully choreographed experiments, Albrecht-Schmitt and his colleagues found that californium had amazing abilities to bond and separate other materials. They also found it was extremely resistant to radiation damage.

“It’s almost like snake oil,” he said. “It sounds almost too good to be true.”

Albrecht-Schmitt said that the discoveries could help scientists build new storage containers for radioactive waste, plus help separate radioactive fuel, which means the fuel could be recycled.

“This has real world application,” he said. “It’s not purely an academic practice.”

Albrecht-Schmitt’s work, “Unusual Structure, Bonding, and Properties in a Californium Borate,” appears published in the newest edition of Nature Chemistry.

But, running the experiments and collecting the data were not small tasks.

After years of working with the U.S. Department of Energy, Albrecht-Schmitt obtained 5 milligrams of californium costing $1.4 million, paid for through an endowment to the university in honor of retired professor Gregory Choppin.

But that tiny, expensive element has opened a whole new world of nuclear chemistry.

“We’re changing how people look at californium and how it can be used,” Albrecht-Schmitt said.

All of the experiments were conducted at Florida State, but Albrecht-Schmitt also worked with theorists and scientists from nine universities and institutes, including Oak Ridge National Laboratory, which supplied the californium.

David A. Dixon, professor of chemistry at the University of Alabama, and his graduate student, Ted Garner, provided the calculations and theory on why the californium could bond in such unique ways, while scientists at Argonne National Laboratory helped correlate the theory with the experiments. Evgeny Alekseev and Wulf Depmeier of Germany also provided an improved understanding on the atomic structure of californium.

Kathleen Haughney | newswise
Further information:
http://www.fsu.edu

Further reports about: Germany Laboratory Radioactive Waste collecting experiments structure tiny

More articles from Life Sciences:

nachricht Unidentified spectra detector
28.06.2016 | European Molecular Biology Laboratory - European Bioinformatics Institute

nachricht Freiburg Biologists Explain Function of Pentagone
28.06.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

Im Focus: Is There Life On Mars?

Survivalist back from Space - 18 months on the outer skin of the ISS

A year and a half on the outer wall of the International Space Station ISS in altitude of 400 kilometers is a real challenge. Whether a primordial bacterium...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

 
Latest News

Rotating ring of complex organic molecules discovered around newborn star

28.06.2016 | Physics and Astronomy

Unidentified spectra detector

28.06.2016 | Life Sciences

Clandestine black hole may represent new population

28.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>