Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher uses medical imaging technology to better understand fish senses

13.03.2012
University of Rhode Island marine biologist Jacqueline Webb gets an occasional strange look when she brings fish to the Orthopedics Research Lab at Rhode Island Hospital.

While the facility's microCT scanner is typically used to study bone density and diseases like osteoporosis, it is also providing new insights into the skull structure and sensory systems of fish.

A professor of biological sciences and director of the marine biology program at URI, Webb studies the lateral line system, a sensory system in all fishes that enables them to detect water flows and vibrations in the water generated by predators and prey. The system is contained in a series of tubular canals in the skull and on the body. When flows and vibrations in the environment cause water to move in the canals, the cilia on the sensory organs inside the canals send a signal to the fish's brain.

"If some fish are able to use nonvisual sensory capabilities such as the lateral line to detect prey without seeing, perhaps that makes them more successful," said Webb. "Fish with specialized widened lateral line canals on the head are probably in a position to do well in more turbid waters and under lower light conditions where visually-oriented fishes might be at a disadvantage."

In order to study the evolution of the lateral line system, Webb must first study its structure in great detail. She has previously studied the system using dried skeletons and other methods, but microCT provides much more detailed images in three-dimensions, which can be rotated and digitally dissected to learn much more about skeletal structure.

"CT scanning technology is allowing us to learn about the internal structure of all sorts of animals in a way we could not before," Webb said. "It's as good as holding a perfect skeleton in your hand, but the resolution is so high that we can see minute features of bone structure that have not been appreciated before."

Webb said that one key insight into the lateral line system that she has gained through the microCT scans is the internal geometry of the canals, which are located over the fish's eyes and on the underside of their lower jaw. Some canals are narrow, others are wide, and still others are constricted at some point in the canal.

The Eurasian ruffe, for instance, is an invasive species in the Great Lakes that has particularly wide lateral line canals. "The sensitivity of their lateral line system appears to allow it to outcompete native species, especially in low light conditions," Webb said.

Another invasive species, the round goby, is missing some of its canals, which makes it less able to compete for food in less-than-optimal conditions. African ciclids typically have constrictions throughout their canals. The ciclids that Webb is studying also have widened canals and are able to feed at night, something that is very unusual among cichlid fishes.

"Fishes with widened canals appear to be using the sensory organs in the canals to find prey, so we expect to see indications of this in the anatomy of their brain," she explained. "In the future, we will also use MRI imaging to see if the fish with widened canals have features in the brain that would suggest an enhancement of their lateral line system."

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>