Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher uses medical imaging technology to better understand fish senses

13.03.2012
University of Rhode Island marine biologist Jacqueline Webb gets an occasional strange look when she brings fish to the Orthopedics Research Lab at Rhode Island Hospital.

While the facility's microCT scanner is typically used to study bone density and diseases like osteoporosis, it is also providing new insights into the skull structure and sensory systems of fish.

A professor of biological sciences and director of the marine biology program at URI, Webb studies the lateral line system, a sensory system in all fishes that enables them to detect water flows and vibrations in the water generated by predators and prey. The system is contained in a series of tubular canals in the skull and on the body. When flows and vibrations in the environment cause water to move in the canals, the cilia on the sensory organs inside the canals send a signal to the fish's brain.

"If some fish are able to use nonvisual sensory capabilities such as the lateral line to detect prey without seeing, perhaps that makes them more successful," said Webb. "Fish with specialized widened lateral line canals on the head are probably in a position to do well in more turbid waters and under lower light conditions where visually-oriented fishes might be at a disadvantage."

In order to study the evolution of the lateral line system, Webb must first study its structure in great detail. She has previously studied the system using dried skeletons and other methods, but microCT provides much more detailed images in three-dimensions, which can be rotated and digitally dissected to learn much more about skeletal structure.

"CT scanning technology is allowing us to learn about the internal structure of all sorts of animals in a way we could not before," Webb said. "It's as good as holding a perfect skeleton in your hand, but the resolution is so high that we can see minute features of bone structure that have not been appreciated before."

Webb said that one key insight into the lateral line system that she has gained through the microCT scans is the internal geometry of the canals, which are located over the fish's eyes and on the underside of their lower jaw. Some canals are narrow, others are wide, and still others are constricted at some point in the canal.

The Eurasian ruffe, for instance, is an invasive species in the Great Lakes that has particularly wide lateral line canals. "The sensitivity of their lateral line system appears to allow it to outcompete native species, especially in low light conditions," Webb said.

Another invasive species, the round goby, is missing some of its canals, which makes it less able to compete for food in less-than-optimal conditions. African ciclids typically have constrictions throughout their canals. The ciclids that Webb is studying also have widened canals and are able to feed at night, something that is very unusual among cichlid fishes.

"Fishes with widened canals appear to be using the sensory organs in the canals to find prey, so we expect to see indications of this in the anatomy of their brain," she explained. "In the future, we will also use MRI imaging to see if the fish with widened canals have features in the brain that would suggest an enhancement of their lateral line system."

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>