Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher uses medical imaging technology to better understand fish senses

13.03.2012
University of Rhode Island marine biologist Jacqueline Webb gets an occasional strange look when she brings fish to the Orthopedics Research Lab at Rhode Island Hospital.

While the facility's microCT scanner is typically used to study bone density and diseases like osteoporosis, it is also providing new insights into the skull structure and sensory systems of fish.

A professor of biological sciences and director of the marine biology program at URI, Webb studies the lateral line system, a sensory system in all fishes that enables them to detect water flows and vibrations in the water generated by predators and prey. The system is contained in a series of tubular canals in the skull and on the body. When flows and vibrations in the environment cause water to move in the canals, the cilia on the sensory organs inside the canals send a signal to the fish's brain.

"If some fish are able to use nonvisual sensory capabilities such as the lateral line to detect prey without seeing, perhaps that makes them more successful," said Webb. "Fish with specialized widened lateral line canals on the head are probably in a position to do well in more turbid waters and under lower light conditions where visually-oriented fishes might be at a disadvantage."

In order to study the evolution of the lateral line system, Webb must first study its structure in great detail. She has previously studied the system using dried skeletons and other methods, but microCT provides much more detailed images in three-dimensions, which can be rotated and digitally dissected to learn much more about skeletal structure.

"CT scanning technology is allowing us to learn about the internal structure of all sorts of animals in a way we could not before," Webb said. "It's as good as holding a perfect skeleton in your hand, but the resolution is so high that we can see minute features of bone structure that have not been appreciated before."

Webb said that one key insight into the lateral line system that she has gained through the microCT scans is the internal geometry of the canals, which are located over the fish's eyes and on the underside of their lower jaw. Some canals are narrow, others are wide, and still others are constricted at some point in the canal.

The Eurasian ruffe, for instance, is an invasive species in the Great Lakes that has particularly wide lateral line canals. "The sensitivity of their lateral line system appears to allow it to outcompete native species, especially in low light conditions," Webb said.

Another invasive species, the round goby, is missing some of its canals, which makes it less able to compete for food in less-than-optimal conditions. African ciclids typically have constrictions throughout their canals. The ciclids that Webb is studying also have widened canals and are able to feed at night, something that is very unusual among cichlid fishes.

"Fishes with widened canals appear to be using the sensory organs in the canals to find prey, so we expect to see indications of this in the anatomy of their brain," she explained. "In the future, we will also use MRI imaging to see if the fish with widened canals have features in the brain that would suggest an enhancement of their lateral line system."

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>