Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Says Houses Might Still be Contaminated Long After Meth Bust

22.10.2009
When authorities discover a “meth house,” they decontaminate it by removing chemicals, getting rid of carpeting, cleaning walls, and airing the place out for a few days. Dr. Glenn Morrison, an associate professor of environmental engineering at Missouri University of Science and Technology, is wondering if the decontamination methods are sufficient to protect future occupants from exposure to methamphetamine and other chemicals.

“Most people who live in a former meth house don’t even know it,” he says. “And some hotel rooms have also been contaminated.”

Recently, Morrison was awarded $116,000 from the National Institute of Standards and Technology to research the interactions between building materials and the chemicals used in methamphetamine labs.

Methamphetamine cooks use a potent combination of ingredients, including ammonia, methanol, ether, benzene and reactive metals. According to Morrison, the chemicals penetrate into materials like paint, wood and vinyl flooring and then “slowly come back to the surface over time.”

Morrison is concerned that children who make contact with the surfaces will ingest methamphetamine. Also, he says, lingering methamphetamine can be released into the air, where it bonds with tiny chemicals that are floating around. This means it could be inhaled, even months to years after rooms were thoroughly cleaned.

“We want to be comfortable with the cleaning methods,” Morrison says. “Are these methods sufficiently protective? How much should people be concerned about living in a former meth house?”

Morrison is leading the Missouri S&T study in conjunction with researchers at the University of Texas-Austin. In order to see how the chemicals interact with building materials, they plan to examine samples taken from homes after a bust and clean-up.

According to Morrison, standard decontamination procedures may need to be amended in the future to include additional steps that are more technical.

Lance Feyh | Newswise Science News
Further information:
http://www.mst.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>