Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Says Houses Might Still be Contaminated Long After Meth Bust

22.10.2009
When authorities discover a “meth house,” they decontaminate it by removing chemicals, getting rid of carpeting, cleaning walls, and airing the place out for a few days. Dr. Glenn Morrison, an associate professor of environmental engineering at Missouri University of Science and Technology, is wondering if the decontamination methods are sufficient to protect future occupants from exposure to methamphetamine and other chemicals.

“Most people who live in a former meth house don’t even know it,” he says. “And some hotel rooms have also been contaminated.”

Recently, Morrison was awarded $116,000 from the National Institute of Standards and Technology to research the interactions between building materials and the chemicals used in methamphetamine labs.

Methamphetamine cooks use a potent combination of ingredients, including ammonia, methanol, ether, benzene and reactive metals. According to Morrison, the chemicals penetrate into materials like paint, wood and vinyl flooring and then “slowly come back to the surface over time.”

Morrison is concerned that children who make contact with the surfaces will ingest methamphetamine. Also, he says, lingering methamphetamine can be released into the air, where it bonds with tiny chemicals that are floating around. This means it could be inhaled, even months to years after rooms were thoroughly cleaned.

“We want to be comfortable with the cleaning methods,” Morrison says. “Are these methods sufficiently protective? How much should people be concerned about living in a former meth house?”

Morrison is leading the Missouri S&T study in conjunction with researchers at the University of Texas-Austin. In order to see how the chemicals interact with building materials, they plan to examine samples taken from homes after a bust and clean-up.

According to Morrison, standard decontamination procedures may need to be amended in the future to include additional steps that are more technical.

Lance Feyh | Newswise Science News
Further information:
http://www.mst.edu

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>