Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher finds potential new use for old drugs

13.11.2013
A class of drugs used to treat parasitic infections such as malaria may also be useful in treating cancers and immune-related diseases, a new WSU-led study has found.

Researchers discovered that simple modifications to the drug furamidine have a major impact on its ability to affect specific human proteins involved in the on-off switches of certain genes.

“This was rather unexpected, given how relatively simple the molecules are that we modified and how difficult it has been to affect these proteins,” said Gregory Poon, pharmaceutical scientist at Washington State University.

The proteins – known as transcription factors – regulate the expression of genes in a highly coordinated and intricate manner, making them attractive targets for therapeutic drugs. But it has proven difficult to design drugs to affect them, Poon said.

“For this reason, they have been called undruggable,” he said. “Recently, however, scientists have been making headway in targeting these transcription factors with drugs, and now our results suggest this class of drugs can be a useful addition to the arsenal.”

Furamidine belongs to a family of drugs known as heterocyclic dications. The drug has a long history of use in serious parasitic diseases such as malaria, African sleeping sickness and PCP, a common infection in HIV/AIDS.

“There is tremendous knowledge and experience with using furamidine and related drugs in humans, so these drugs have an important advantage over other classes of drugs that are relatively behind in clinical experience,” Poon said.

Poon collaborated with researchers at Georgia State University. The team found that derivatives of furamidine can target a specific transcription factor known as PU.1.

Their findings were published in Nucleic Acids Research journal (http://nar.oxfordjournals.org/content/early/2013/10/23/nar.gkt955.full).

PU.1 is a major factor in development and function of the human immune system, and it plays important roles in diseases such as some leukemias, multiple sclerosis and diabetes. PU.1 is also a member of a large family of related transcription factors, known as ETS, that is involved in a broader range of cancers and other diseases.

“I am fortunate to be working with some of the best people in this area,” Poon said, referring to his collaborators, Dave Boykin and David Wilson of Georgia State University. “The challenge now is to fine-tune this class of drugs to make them as specific as possible to other ETS-family transcription factors as well.”

Their research is supported by the WSU College of Pharmacy and by the National Institutes of Health at Georgia State University.

Contacts:
Gregory Poon, WSU College of Pharmacy, 509-335-8341, gpoon@wsu.edu
Lorraine Nelson, WSU College of Pharmacy communications, 509-368-6671, lanelson@wsu.edu

Gregory Poon | EurekAlert!
Further information:
http://www.wsu.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>