Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher finds potential new use for old drugs

13.11.2013
A class of drugs used to treat parasitic infections such as malaria may also be useful in treating cancers and immune-related diseases, a new WSU-led study has found.

Researchers discovered that simple modifications to the drug furamidine have a major impact on its ability to affect specific human proteins involved in the on-off switches of certain genes.

“This was rather unexpected, given how relatively simple the molecules are that we modified and how difficult it has been to affect these proteins,” said Gregory Poon, pharmaceutical scientist at Washington State University.

The proteins – known as transcription factors – regulate the expression of genes in a highly coordinated and intricate manner, making them attractive targets for therapeutic drugs. But it has proven difficult to design drugs to affect them, Poon said.

“For this reason, they have been called undruggable,” he said. “Recently, however, scientists have been making headway in targeting these transcription factors with drugs, and now our results suggest this class of drugs can be a useful addition to the arsenal.”

Furamidine belongs to a family of drugs known as heterocyclic dications. The drug has a long history of use in serious parasitic diseases such as malaria, African sleeping sickness and PCP, a common infection in HIV/AIDS.

“There is tremendous knowledge and experience with using furamidine and related drugs in humans, so these drugs have an important advantage over other classes of drugs that are relatively behind in clinical experience,” Poon said.

Poon collaborated with researchers at Georgia State University. The team found that derivatives of furamidine can target a specific transcription factor known as PU.1.

Their findings were published in Nucleic Acids Research journal (http://nar.oxfordjournals.org/content/early/2013/10/23/nar.gkt955.full).

PU.1 is a major factor in development and function of the human immune system, and it plays important roles in diseases such as some leukemias, multiple sclerosis and diabetes. PU.1 is also a member of a large family of related transcription factors, known as ETS, that is involved in a broader range of cancers and other diseases.

“I am fortunate to be working with some of the best people in this area,” Poon said, referring to his collaborators, Dave Boykin and David Wilson of Georgia State University. “The challenge now is to fine-tune this class of drugs to make them as specific as possible to other ETS-family transcription factors as well.”

Their research is supported by the WSU College of Pharmacy and by the National Institutes of Health at Georgia State University.

Contacts:
Gregory Poon, WSU College of Pharmacy, 509-335-8341, gpoon@wsu.edu
Lorraine Nelson, WSU College of Pharmacy communications, 509-368-6671, lanelson@wsu.edu

Gregory Poon | EurekAlert!
Further information:
http://www.wsu.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>