Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Finds Link Between Soil Nitrite and Atmospheric Detergent Effect

23.08.2011
Yafang Cheng, a University of Iowa post-doctoral researcher, and colleagues at the Max Planck Institute for Chemistry, Mainz, Germany, have found that soil nitrite can be released into the air in the form of nitrous acid (HONO) and indirectly enhance the self-cleansing capacity of the atmosphere.

The study is published in the Aug. 18 online edition of the journal Science (http://www.sciencemag.org/content/early/2011/08/17/science.1207687).

Hydroxyl radicals (OH) have long been known to serve as an atmospheric "detergent," which oxidizes air pollutants and makes them more easily washed out of the air. Atmospheric nitrous acid is an important source of OH, producing up to 30 percent according to field measurement data. However, the major source of HONO has been a mystery -- until now.

In laboratory studies, the researchers showed that soil nitrites -- produced by biogenic conversion of fertilizer -- emit significant amounts of HONO into the atmosphere. The result is a strong increase in the oxidizing capacity of the atmosphere.

The release of HONO from arable soils is particularly important in developing countries because of the increased use of fertilizers and soil acidification.

Cheng said that because eutrophication resulting from the use of farm fertilizers harms the environment in many ways, their research finding should be interpreted as showing that soil nitrite can buffer, in some respects -- but not counteract -- the overall impact of fertilizer application.

"Due to the widespread occurrence of nitrite-producing microbes and natural nitrogen nutrient in soil, the release of nitrous acid from soils may also be influential in natural environments, including forests and boreal regions," said Cheng, the lead author of the paper.

Cheng is a post-doctoral researcher studying under Greg Carmichael, UI professor of chemical and biochemical engineering in the College of Engineering and co-director of the Center for Global and Regional Environmental Research (CGRER).

Cheng's co-authors on the Science paper are: Hang Su, Robert Oswald, Thomas Behrendt, Ivonne Trebs, Franz X. Meixner, Meinrat O. Andreae, Peng Cheng, Yuanhang Zhang and Ulrich Pöschl. The paper is titled, "Soil nitrite as a source of atmospheric HONO and OH radicals."

STORY SOURCE: University of Iowa News Services, 300 Plaza Centre One, Suite 371, Iowa City, Iowa 52242-2500

MEDIA CONTACT: Gary Galluzzo, 319-384-0009, gary-galluzzo@uiowa.edu

Gary Galluzzo | Newswise Science News
Further information:
http://www.uiowa.edu

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>