Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Finds Hydrogen Production in Extreme Bacterium

03.02.2015

A researcher at Missouri University of Science and Technology has discovered a bacterium that can produce hydrogen, an element that one day could lessen the world’s dependence on oil.

Dr. Melanie Mormile, professor of biological sciences at Missouri S&T, and her team discovered the bacterium “Halanaerobium hydrogeninformans” in Soap Lake, Washington. It can “produce hydrogen under saline and alkaline conditions in amounts that rival genetically modified organisms,” Mormile says.

“Usually, I tend to study the overall microbial ecology of extreme environments, but this particular bacterium has caught my attention,” Mormile says. “I intend to study this isolate in greater detail.”

Mormile, an expert in the microbial ecology of extreme environments, wasn’t searching for a bacterium that could produce hydrogen. Instead, she first became interested in bacteria that could help clean up the environment, especially looking at the extremophiles found in Soap Lake. An extremophile is a microorganism that lives in conditions of extreme temperature, acidity, alkalinity or chemical concentration. Living in such a hostile environment, “Halanaerobium hydrogeninformans” has metabolic capabilities under conditions that occur at some contaminated waste sites.

With “Halanaerobium hydrogeninformans,” she expected to find an iron-reducing bacterium and describe a new species. What she found was a new species of bacterium that can produce hydrogen and 1, 3-propanediol under high pH and salinity conditions that might turn out to be valuable industrially. An organic compound, 1, 3-propenediol can be formulated into industrial products including composites, adhesives, laminates and coatings. It’s also a solvent and can be used as antifreeze.

The infrastructure isn’t in place now for hydrogen to replace gasoline as a fuel for planes, trains and automobiles. But if hydrogen becomes an alternative to gasoline, “Halanaerobium hydrogeniformans,” mass-produced on an industrial scale, might be one solution – although it won’t be a solution anytime soon.

“It would be great if we got liters and liters of production of hydrogen,” Mormile says. “However, we have not been able to scale up yet.”

In her first single-author article, Mormile’s findings were featured in the Nov. 19 edition of Frontiers in Microbiology.

Mormile holds two patents for her work on the Soap Lake bacterium’s biohydrogen formation under very alkaline and saline conditions. Also named on the patents are Dr. Judy Wall, Curators' Professor of Biochemistry and Joint Curators' Professor of Molecular Microbiology & Immunology at the University of Missouri-Columbia, and her former lab members, Matthew Begemann and Dwayne Elias. A pending patent application, submitted along with Elias; Dr. Oliver Sitton, professor of chemical and biochemical engineering at Missouri S&T; and Daniel Roush, then a master’s student for Mormile, is for the conversion of glycerol to 1, 3-propanediol, also under hostile alkaline and saline conditions.

This patented and patent-pending technology is available for licensing through the Missouri S&T Center for Technology Transfer and Economic Development. Contact Eric Anderson at 573-341-4690 or ericwa@mst.edu for more information.


Contact: Joe McCune, 573-341-4259, mccunej@mst.edu
More news from Missouri S&T: http://news.mst.edu

Joe McCune | newswise

Further reports about: Hydrogen Lake alkaline ecology extreme environments microbial ecology new species saline

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>