Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researcher finds altered cerebella in those with Down syndrome

Accounts for poor motor skills, coordination

A scientist investigating why those with Down syndrome often have poor balance and motor coordination has found that key eye reflexes are substantially altered.

The findings by University of Colorado School of Medicine researcher Alberto Costa, MD, Ph.D., could lead to new tools to assess the effectiveness of new drugs and therapies aimed at improving quality of life for those with this genetic disorder.

"People with Down syndrome suffer various degrees of motor difficulty," said Costa, whose study was published last week in the journal, Experimental Brain Research. "They tend to walk later than their typical peers; they often lack balance and have low muscle tone and poor postural control."

That's likely because Down syndrome affects the optokinetic and vestibular systems of the brain. In a healthy brain, the vestibular system reacts to signals from neuroreceptors in the inner ear to produce responses to head movements. The optokinetic system uses visual information to produce eye movement. These reactions are often slow or decreased in those with Down syndrome.

Costa studied 32 participants between the ages of 14 and 36. He used special binocular goggles to measure eye movements in response to visual and vestibular stimuli. His focus was the cerebellum which is responsible for balance, posture and movement control.

"Although we have known for many years that the cerebellum is disproportionally shrunk in persons with Down syndrome, we wanted to find out how their cerebella operated on a functional level," Costa said. "We found that people with Down had much diminished optokinetic and vestibular reflexes compared to typically developing individuals. As a consequence, it is likely that things may appear blurry when they ride a bike or play sports."

Because those with Alzheimer's disease also show a similar reduction in the optokinetic reflex, these new findings further support Costa's ongoing exploration of the links between Down and Alzheimer's disease.

"All individuals with Down syndrome develop a neuropathology indistinguishable from Alzheimer's disease after the third decade of life," he said.

Babies born with Down often carry the biological markers for Alzheimer's. At the same time, 20-30 percent of those with Down syndrome develop full-blown Alzheimer's dementia by the time they reach their 50s, he said.

Costa recently completed a clinical trial with the drug Memantine – used to treat Alzheimer's patients - to determine if it could boost memory and learning in those with Down syndrome. His work was chronicled in a lengthy New York Times Magazine profile earlier this month.

"Alzheimer's patients suffer similar declines to those with Down syndrome and we might be able to use the same drugs to treat both," he said. "As we continue to explore how these two conditions are linked, new avenues of treatment could arise that would not only alleviate symptoms but perhaps delay or stop the progression of these degenerative disorders."

Costa's study was supported by the Coleman Institute for Cognitive Disabilities at the University of Colorado and the Linda Crnic Institute for Down syndrome.

Faculty at the University of Colorado School of Medicine work to advance science and improve care. These faculty members include physicians, educators and scientists at University of Colorado Hospital, Children's Hospital Colorado, Denver Health, National Jewish Health, and the Denver Veterans Affairs Medical Center. Degrees offered by the CU Denver School of Medicine include doctor of medicine, doctor of physical therapy, and masters of physician assistant studies. The School is located on the University of Colorado's Anschutz Medical Campus, one of four campuses in the University of Colorado system. For additional news and information, please visit the UC Denver newsroom online.

David Kelly | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>