Researcher discovers new type of spinal cord stem cell

The radial glial cells, which are marked by long projections that can forge through brain tissue, had never previously been found in an adult spinal cord. Radial glia, which are instrumental in building the brain and spinal cord during an organism’s embryonic phase, vastly outnumber other potential stem cells in the spinal cord and are much more accessible. Their findings were published online this week in PLoS One.

Stem cells have the capability of dividing into more specialized types of cells, either during the growth of an organism or to help replenish other cells. Scientists consider stem cells a promising way to replace injured or diseased organs and tissues.

The search for spinal stem cells of the central nervous system has until now focused deep in the spinal cord. Jane Roskams, a professor in the UBC Dept. of Zoology, broadened the search by using genetic profiles of nervous system stem cells that were developed and made publicly accessible by the Allen Institute for Brain Science in Seattle.

Roskams, collaborating with researchers at the Allen Institute, McGill University and Yale University, found cells with similar genes – radial glial cells – along the outside edge of spinal cords of mice.

“That is exactly where you would want these cells to be if you want to activate them with drugs while minimizing secondary damage,” says Roskams, a member ICORD (International Collaboration on Repair Discoveries) and the Brain Research Center, both partnerships of UBC and the Vancouver Coastal Health Research Institute.

Roskams’ team also found that radial glial cells in the spinal cord share a unique set of genes with other neural stem cells. Several of these – when mutated – can lead to human diseases, including some that target the nervous system. That discovery opens new possibilities for potential gene therapy treatments that would replace mutated, dysfunctional spinal cord cells with healthier ones produced by the radial glial cells.

“These long strands of radial glial cells amount to a potentially promising repair network that is perfectly situated to help people recover from spinal cord injuries or spinal disorders,” Roskams says. “For some reason, they aren’t re-activated very effectively in adulthood. The key is to find a way of stimulating them so they reprise their role of generating new neural cells when needed.”

The research was supported by the Canadian Institutes of Health Research, the Michael Smith Foundation for Health Research, the Natural Sciences and Engineering Research Council of Canada and the Jack Brown and Family Alzheimer’s Research Foundation.

The University of British Columbia (UBC) is one of North America’s largest public research and teaching institutions, and one of only two Canadian institutions consistently ranked among the world’s 40 best universities. Surrounded by the beauty of the Canadian West, it is a place that inspires bold, new ways of thinking that have helped make it a national leader in areas as diverse as community service learning, sustainability and research commercialization. UBC offers more than 50,000 students a range of innovative programs and attracts $550 million per year in research funding from government, non-profit organizations and industry through 7,000 grants.

Vancouver Coastal Health Research Institute (VCHRI) is the research body of Vancouver Coastal Health Authority, which includes BC’s largest academic and teaching health sciences centres: VGH, UBC Hospital, and GF Strong Rehabilitation Centre. In academic partnership with the University of British Columbia, VCHRI brings innovation and discovery to patient care, advancing healthier lives in healthy communities across British Columbia, Canada, and beyond. www.vchri.ca.

International Collaboration on Repair Discoveries (ICORD), is a world leading health research centre focused on spinal cord injury. From the lab-based cellular level of understanding injury to rehabilitation and recovery, our researchers are dedicated to the development and translation of more effective strategies to promote prevention, functional recovery, and improved quality of life after spinal cord injury. Located at Vancouver General Hospital in the Blusson Spinal Cord Centre, ICORD is supported by UBC Faculty of Medicine and Vancouver Coastal Health Research Institute. Visit www.icord.org.

The Brain Research Centre comprises more than 200 investigators with multidisciplinary expertise in neuroscience research ranging from the test tube, to the bedside, to industrial spin-offs. The centre is a partnership of UBC and VCH Research Institute. For more information, visit www.brain.ubc.ca.

Related topics: amyotrophic lateral sclerosis, Brain Research Centre, health, icord, medical research, multiple sclerosis, spinal cord, spinal cord injury, stem cells, Vancouver Coastal Health Research Institute, VCH, VCHRI

Media Contact

Brian Kladko EurekAlert!

More Information:

http://www.ubc.ca

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors