Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research validates clinical importance of leukemia stem cells

29.08.2011
Paving the way for personalized treatment

Cancer scientists have long debated whether all cells within a tumour are equal or whether some cancer cells are more potent - a question that has been highly investigated in experimental models in the last decade. Research published today in Nature Medicine (10.1038/nm.2415) focuses on patients and shows that acute myeloid leukemia (AML) contains rare cells with stem cell properties, called leukemia stem cells (LSC), that are better at predicting clinical outcome than the majority of AML cells, showing for the first time that LSCs are significant not just in experimental models but also in patients.

"Even though LSCs are like a needle in a haystack, their unique properties influence whether AML will respond to therapy or whether the disease comes back. This means that future efforts to prevent the disease from recurring and improving overall patient survival must consider ways to target LSCs to ensure they are killed," says principal investigator John Dick, who holds a Canada Research Chair in Stem Cell Biology and is a Senior Scientist at the McEwen Centre for Regenerative Medicine and the Ontario Cancer Institute, Princess Margaret Hospital. Dr. Dick pioneered the cancer stem cell field by identifying leukemia stem cells in 1994 and colon cancer stem cells in 2007.

By sorting, analyzing and comparing healthy stem cells, leukemia stem cells and clinical data, Dr. Dick's international research team uncovered a set of genes, or signature, that was common to both normal and LSCs and showed that the set could accurately predict the course of disease in the patients studied. Patients that strongly expressed the stem cell signature had much shorter survival than those patients that had low expression of the signature. The research team included post-doctoral fellows Kolja Eppert, Eric Lechman and Katsuto Takenaka and PhD student Peter van Galen.

The genes within the stem cell signature provide new drug targets that could be used to eliminate LSCs. These genes also represent potential AML biomarkers that could be used to identify those patients that might benefit from more aggressive therapy. In the long term, this information could be used to personalize cancer therapy and get the right drug to the right patient, as opposed to a "one-size-fits-all" approach of treating groups of patients identically.

"Although our research was on AML, our findings that LSCs are real and relevant in patients set the entire cancer stem cell field on a firmer footing. Our approach could be used as a template to test the clinical importance of cancer stem cells from solid tumors and other forms of leukemia," says Dr. Dick, who works out of UHN's Ontario Cancer Institute – where stem-cell science began 50 years ago – and alongside this generation's other leading stem-cell scientists at the McEwen Centre for Regenerative Medicine.

Dr. Dick recently isolated normal human blood stem cells and developed the first means to collect them in large quantities. As well as being a Senior Scientist at UHN's Princess Margaret and Toronto General Hospitals, he is a Professor in the Department of Molecular Genetics, University of Toronto, and Director of the Cancer Stem Cell Program at the Ontario Institute for Cancer Research.

This research was supported by The Stem Cell Network of Canadian National Centres of Excellence, the Terry Fox Foundation, Ontario Institute for Cancer Research with funds from the province of Ontario, the Canadian Cancer Society Research Institute, Genome Canada through the Ontario Genomics Institute, the Canadian Institutes for Health Research, a Canada Research Chair, the Leukemia and Lymphoma Society, Ministry of Education, Culture, Sports, Science and Technology in Japan. Computational resources were supported in part by Ontario Research Fund, Canada Foundation for Innovation and IBM. Grants from the German Ministry of Education and Research, the DFG also contributed. This research was funded in part by the Ontario Ministry of Health and Long Term Care. Dr. Dick's research is also supported by The Princess Margaret Hospital Foundation.

About Princess Margaret Hospital

Princess Margaret Hospital and its research arm, Ontario Cancer Institute, have achieved an international reputation as global leaders in the fight against cancer. Princess Margaret Hospital is a member of the University Health Network, which also includes Toronto General Hospital, Toronto Western Hospital and Toronto Rehabilitation Institute. All are research hospitals affiliated with the University of Toronto. For more information, go to www.uhn.ca

Geoff Koehler | EurekAlert!
Further information:
http://www.uhn.on.ca

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>