Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New research validates clinical importance of leukemia stem cells

Paving the way for personalized treatment

Cancer scientists have long debated whether all cells within a tumour are equal or whether some cancer cells are more potent - a question that has been highly investigated in experimental models in the last decade. Research published today in Nature Medicine (10.1038/nm.2415) focuses on patients and shows that acute myeloid leukemia (AML) contains rare cells with stem cell properties, called leukemia stem cells (LSC), that are better at predicting clinical outcome than the majority of AML cells, showing for the first time that LSCs are significant not just in experimental models but also in patients.

"Even though LSCs are like a needle in a haystack, their unique properties influence whether AML will respond to therapy or whether the disease comes back. This means that future efforts to prevent the disease from recurring and improving overall patient survival must consider ways to target LSCs to ensure they are killed," says principal investigator John Dick, who holds a Canada Research Chair in Stem Cell Biology and is a Senior Scientist at the McEwen Centre for Regenerative Medicine and the Ontario Cancer Institute, Princess Margaret Hospital. Dr. Dick pioneered the cancer stem cell field by identifying leukemia stem cells in 1994 and colon cancer stem cells in 2007.

By sorting, analyzing and comparing healthy stem cells, leukemia stem cells and clinical data, Dr. Dick's international research team uncovered a set of genes, or signature, that was common to both normal and LSCs and showed that the set could accurately predict the course of disease in the patients studied. Patients that strongly expressed the stem cell signature had much shorter survival than those patients that had low expression of the signature. The research team included post-doctoral fellows Kolja Eppert, Eric Lechman and Katsuto Takenaka and PhD student Peter van Galen.

The genes within the stem cell signature provide new drug targets that could be used to eliminate LSCs. These genes also represent potential AML biomarkers that could be used to identify those patients that might benefit from more aggressive therapy. In the long term, this information could be used to personalize cancer therapy and get the right drug to the right patient, as opposed to a "one-size-fits-all" approach of treating groups of patients identically.

"Although our research was on AML, our findings that LSCs are real and relevant in patients set the entire cancer stem cell field on a firmer footing. Our approach could be used as a template to test the clinical importance of cancer stem cells from solid tumors and other forms of leukemia," says Dr. Dick, who works out of UHN's Ontario Cancer Institute – where stem-cell science began 50 years ago – and alongside this generation's other leading stem-cell scientists at the McEwen Centre for Regenerative Medicine.

Dr. Dick recently isolated normal human blood stem cells and developed the first means to collect them in large quantities. As well as being a Senior Scientist at UHN's Princess Margaret and Toronto General Hospitals, he is a Professor in the Department of Molecular Genetics, University of Toronto, and Director of the Cancer Stem Cell Program at the Ontario Institute for Cancer Research.

This research was supported by The Stem Cell Network of Canadian National Centres of Excellence, the Terry Fox Foundation, Ontario Institute for Cancer Research with funds from the province of Ontario, the Canadian Cancer Society Research Institute, Genome Canada through the Ontario Genomics Institute, the Canadian Institutes for Health Research, a Canada Research Chair, the Leukemia and Lymphoma Society, Ministry of Education, Culture, Sports, Science and Technology in Japan. Computational resources were supported in part by Ontario Research Fund, Canada Foundation for Innovation and IBM. Grants from the German Ministry of Education and Research, the DFG also contributed. This research was funded in part by the Ontario Ministry of Health and Long Term Care. Dr. Dick's research is also supported by The Princess Margaret Hospital Foundation.

About Princess Margaret Hospital

Princess Margaret Hospital and its research arm, Ontario Cancer Institute, have achieved an international reputation as global leaders in the fight against cancer. Princess Margaret Hospital is a member of the University Health Network, which also includes Toronto General Hospital, Toronto Western Hospital and Toronto Rehabilitation Institute. All are research hospitals affiliated with the University of Toronto. For more information, go to

Geoff Koehler | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>