Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research at the University of Haifa identified a protein essential in long term memory consolidation

11.09.2008
New research at the University of Haifa identified a specific protein essential for the process of long term memory consolidation.

This is the latest of several discoveries that are leading us towards a better understanding of one of the most complex processes in nature – the process of memory creation and consolidation in the human brain. This latest research was published recently in the prestigious journal Nature Neuroscience.

The human brain constantly receives sensory stimuli from the outside world: sounds, tastes, visuals, touch and smells. A very small fraction of these stimuli which are recorded in short term memory actually become part of our long term memory. Previous studies in the laboratory for "Molecular Mechanisms of Learning and Memory" at the University of Haifa identified a protein linked to the quality of long term memories. In the current study, the researchers were looking to understand how long term memories are stabilized.

The research team led by Prof. Kobi Rosenblum, Head of the Department of Neurobiology and Ethology at the University of Haifa, and PhD student Alina Elkobi together with Drs. Katya Belelovsky and Liza Barki and in cooperation with Dr. Ingrid Ehrlich from the Friedrich Miescher Institute at the University of Basel, Switzerland, searched for a protein which is present during the process of memory formation and is actually an essential factor in the process.

Using taste learning in mice, the researchers found learning-related induction of the protein PSD-95 in the brain cortex "taste center" during the process of memory creation. However, when the mice were exposed to known tastes, PSD-95 was not induced in this center of the brain cortex.

In order to prove that PSD-95 is essential for the process of memory creation, the researchers used two different groups of mice who had undergone the same tests for taste learning. Using genetic engineering, the researchers halted the process of PSD-95 production in the nerve cells of the "taste center" in the cortex. The group whose PSD-95 production was stopped had no memory of new tastes the day after being introduced to them while the other group remembered the tastes – demonstrating that a new memory was created when PSD-95 was induced and that the information disappeared from the brain when the protein was not induced.

The study further examined the effect of PSD-95 production on existing memories. Mice that had already been introduced to and remembered certain tastes were genetically engineered to stop producing the protein and they still remembered the tastes – demonstrating that while PSD-95 induction is essential for memory creation, its absence does not affect memory retention.

"The process of long term memory creation in the human brain is one of the incredible processes which is so clearly different than "artificial brains" like those in a computer. While an "artificial brain" absorbs information and immediately saves it in its memory, the human brain continues to process information long after it is received, and the quality of memories depends on how the information is processed. One of the first processes to be affected in neurodegenerative diseases like Alzheimer's and Parkinson's is that of memory acquisition and processing.

In this research we identified one specific protein, among the many proteins active in brain synapses, whose production is essential for the brain to process and remember information it receives. The more we understand about the processes and elements involved in this complicated process, the sooner we will be able to develop medications which will delay the progression of cognitive degenerative diseases and enable patients to continue normative functioning," explains Prof. Rosenblum.

Laurie Groner | EurekAlert!
Further information:
http://www.haifa.ac.il

Further reports about: Brain PSD-95 Protein consolidation human brain memory creation

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>