Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research team targets self-cannibalizing cancer cells

A team of scientists from Princeton University and The Cancer Institute of New Jersey has embarked on a major new project to unravel the secret lives of cancer cells that go dormant and self-cannibalize to survive periods of stress. The work may help produce new cancer therapies to stem changes that render cancer cells dangerous and resistant to treatment.

"We want to know: What role is this self-cannibalization playing in the middle of a tumor?" said team member Hilary Coller, an assistant professor of molecular biology at Princeton. "To treat cancer, it may be that you want to get rid of this ability in tumor cells, so we're searching for inducers and inhibitors of this process."

Eileen White, associate director for basic science at CINJ, Coller and Princeton chemist Joshua Rabinowitz recently received a $1 million National Institutes of Health Challenge Grant through the American Reinvestment and Recovery Act to support the research effort, which is made possible by the longstanding partnership between Princeton and CINJ. The two institutions recently formalized their relationship when Princeton officially joined CINJ as a scientific collaborator to enhance current investigations and foster future work at the frontier of cancer research. CINJ is a Center of Excellence of the University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School and New Jersey's only National Cancer Institute-designated Comprehensive Cancer Center.

For more than 50 years, scientists have known that significant differences exist between the metabolic processes of normal and cancerous cells. These processes encompass the complex set of chemical reactions that control everything from converting food into usable energy to manufacturing cellular components for growth and reproduction. But the causes and consequences of these metabolic differences remain largely unknown -- and the possibilities for exploiting these differences as potential targets for new therapies have been largely untapped. The NIH project is designed to fund inquiry into these important questions.

The altered metabolism of cancer cells allows them to grow rapidly and proliferate, leading to the development of aggressive tumors often able to spread, or metastasize, to other areas of the body. But when subjected to stressful conditions, such as oxygen- and nutrient-deprivation in the center of a tumor or an onslaught of chemotherapeutic agents, these cells are able to stop proliferating and cannibalize portions of themselves, a process known as autophagy.

"This ingenious property allows these cancer cells to tolerate enormous amounts of stress," said White, who also is a professor of molecular biology and biochemistry at Rutgers University. "If they're starving or stressed, they eat themselves and hunker down until the stress is removed. Then, as soon as the stress is gone, they grow back, often killing the patient. If we can understand this process and exploit it for cancer therapy, we may develop new ways to kill the cancer cells without killing the normal cells."

Autophagy is believed to confer stress resistance to cells by providing energy and disposing of old or damaged cell parts that might otherwise prove harmful to the cell over time, and it is not unique to cancer cells: Coller studies a metabolic state known as cellular quiescence in fibroblast cells. Fibroblasts are found in connective tissue, which includes cartilage and the cellular matrix known as stroma that provides support to body structures, such as organs, glands and also tumors. Akin to dormant cancer cells, quiescent fibroblasts take a break from the normal cell growth cycle, but maintain the ability to re-enter the cycle in the future. Like dormant cancer cells, quiescent fibroblasts often engage in autophagy.

Cancer researchers now recognize that a full understanding of how a tumor behaves in response to stress requires knowledge about the metabolism of the cancerous cells and the stromal cells in the tumor, which often constitute a large percentage of the tumor itself, as well as an awareness of how the metabolism of cancerous and noncancerous cells affect one another. Supported by the NIH Challenge Grant, the interdisciplinary team is seeking to define the metabolic networks in stromal and tumor cells, identify the metabolic adaptations that take place as cells transition between different metabolic states, and demonstrate how these changes alter tumor-stromal interaction. The team also is supported by grants from CINJ and the New Jersey Commission on Cancer Research.

The research effort makes use of wide-ranging scientific techniques, including DNA microarray analyses to identify the gene expression changes that underlie metabolic alterations and state-of-the-art methods to identify altered metabolic states by quantifying the concentrations of metabolites -- compounds generated during biological processes that provide chemical clues into which metabolic processes are taking place -- and watching how they change over time.

To do this, the team relies on Rabinowitz's expertise in the use of mass spectrometry to observe the flows, or fluxes, of metabolites that have been labeled with stable isotopic tracers -- nuclei which, like radioactive tracers, have extra neutrons. These tracers are not radioactive, however; instead, they are detected solely based on their different masses.

"If you only take a snapshot of which metabolites are present at any given time, you can miss the bigger picture of what is taking place, especially because many metabolites turn over every few seconds," said Rabinowitz, an associate professor of chemistry and genomics. "Adding isotope-labeled nutrient is the equivalent of determining how fast a stream is moving by adding red food coloring at a given point upstream and seeing how long it takes for the food coloring to make its way downstream."

The project complements clinical trials investigating ways to modulate autophagy in cancer cells, some of which are already under way at CINJ. One study is assessing whether adding hydroxycholoroquine, an anti-malaria drug known to have autophagy-blocking activity, to standard therapy for recurrent colon cancer will increase the number of cancers that go into remission or boost the length of remission.

"The ultimate test will be to take all of our findings and use that information to develop novel approaches for eradicating cancer," White said. "If we can prevent tumor cells from utilizing this altered metabolic state then that should be the Achilles' heel of tumors."

The cutting-edge research effort demonstrates the merits of the collaboration between Princeton and CINJ, which developed through a natural progression driven by science.

"By uniting Princeton's expertise in systems biology, genomics and metabolism with CINJ's top-rate cancer molecular biology and clinical expertise, these collaborations provide opportunities for interaction that promises what the National Cancer Institute has been encouraging – translational research that harnesses basic discoveries for the prevention and treatment of cancer," said James Broach, a Princeton professor of molecular biology who directs the partnership in collaboration with CINJ Deputy Director Edmund Lattime.

"For years our world-class scientists at both facilities have been collaborating on individual cancer research projects," Lattime said. "By entering into a formal partnership, we are strengthening our team science approach so that we can collectively advance cancer research in New Jersey. This will enhance the development of the most innovative, cutting edge cancer treatments for patients in New Jersey and beyond. "

The partnership has already generated groundbreaking results: Last year, a group of Princeton and CINJ researchers led by Princeton molecular biologist Yibin Kang identified a gene, known as Metadherin or MTDH, which is responsible for metastasis and treatment resistance in some 30 to 40 percent of breast cancer patients. The work constituted a breakthrough in the understanding of the disease, laying the groundwork for the development of new treatments, and also established research methods that could be used to identify genes responsible for the metastasis of other types of cancer.

Kitta MacPherson | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>