Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Team Finds Key Target of Aging Regulator

12.06.2009
Researchers at The Wistar Institute have defined a key target of an evolutionarily conserved protein that regulates the process of aging. The study, published June 11 in Nature, provides fundamental knowledge about key mechanisms of aging that could point toward new anti-aging strategies and cancer therapies.

Scientists have long known that a class of proteins called sirtuins promotes fitness and longevity in most organisms ranging from single-celled yeast to mammals. At the cellular level, sirtuins protect genome integrity, enhance resistance to adverse stresses, and antagonize senescence. However, the underlying molecular mechanisms have remained poorly understood.

The team, led by senior author Shelley Berger, Ph.D., Hilary Koprowski Professor at The Wistar Institute, demonstrated for the first time a molecular target for a member of this class, Sir2, in regulation of aging in yeast cells. Sir2 removes an acetyl group attached to a specific site (lysine at position 16 or K16) on histone H4—histones are proteins that package and organize the long strands of DNA within the nucleus and also are central regulators in turning genes on and off.

The study reveals that removal of this acetyl group by Sir2 near the chromosome ends—the telomeres—is important for yeast cells to maintain the ability to replicate. Researchers found that Sir2 levels decline as cells age, and there is a concomitant accumulation of the acetylation mark along with disrupted histone organization at telomeres.

Deacetylation of H4K16 by Sir2 and consequent telomere stability play a major role in maintaining long lifespan in yeast. Since sirtuins deacetylate many different proteins, these results clarify a key role of Sir2 protein in control of lifespan.

“Some modifications on histones, like this acetylation on histone H4 lysine 16, are persistent and are maintained through generations of cell divisions. This DNA-independent inheritance is called epigenetics,” Berger says. “Characteristic epigenetic features have been discovered for various developmental processes in recent years. Understanding epigenetic changes associated with aging is a hugely exciting direction in aging research. It will provide insights and ideas not only for new therapies to regulate cells that have lost control of proliferation, such as ‘immortal’ cells found in cancers, but also for new strategies to maintain health and fitness.”

“We plan to continue to search for new targets of Sir2 and other aging regulators,” says lead author Weiwei Dang, Ph.D., a postdoctoral scientist working with Berger. “We are designing unbiased screens for other aging targets and mechanisms in chromatin. Using yeast as our aging model enables us to do many discovery screens that are impossible with other, more complex organisms. Yet it is remarkable that many of these chromatin mechanisms associated with yeast could turn out to be relevant even for aging human cells.”

Along with senior author Berger and lead author Dang, other authors include: research assistants Rocco Perry and Jean A. Dorsey, from Wistar; graduate student Kristan K. Steffen, Assistant Professor Matt Kaeberlein, Ph.D., and Assistant Professor Brian K. Kennedy, Ph.D., from the University of Washington, Seattle; Assistant Professor F. Brad Johnson, M.D., Ph.D., from the University of Pennsylvania; and Investigator Ali Shilatifard, Ph.D., from the Stowers Institute. This work was funded by the National Institutes of Health and an AFAR Julie Martin Mid-Career Award in Aging Research.

The Wistar Institute is an international leader in biomedical research with special expertise in cancer research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the country, Wistar has long held the prestigious Cancer Center designation from the National Cancer Institute. Discoveries at Wistar led to the creation of the rubella vaccine that eradicated the disease in the United States, human rabies vaccines used worldwide, and a rotavirus vaccine approved in 2006. Today, Wistar is home to preeminent research programs studying skin cancer, lung cancer, and brain tumors. Wistar Institute Vaccine Center scientists are creating new vaccines against pandemic influenza, HIV, and other diseases threatening global health. The Institute works actively to transfer its inventions to the commercial sector to ensure that research advances move from the laboratory to the clinic as quickly as possible. The Wistar Institute: Today’s Discoveries — Tomorrow’s Cures.

Susan Finkelstein | Newswise Science News
Further information:
http://www.wistar.org

More articles from Life Sciences:

nachricht New type of photosynthesis discovered
17.06.2018 | Imperial College London

nachricht New ID pictures of conducting polymers discover a surprise ABBA fan
17.06.2018 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>