Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research team establishes benchmark set of human genotypes for sequencing

19.02.2014
Refining genomic data may help researchers gain traction against human disease

Led by biomedical engineer Justin Zook of the National Institute of Standards and Technology, a team of scientists from Harvard University and the Virginia Bioinformatics Institute of Virginia Tech has presented new methods to integrate data from different sequencing platforms, thus producing a reliable set of genotypes to benchmark human genome sequencing.

"Understanding the human genome is an immensely complex task and we need great methods to guide this research," Zook says. "By establishing reference materials and gold standard data sets, scientists are one step closer to bringing genome sequencing into clinical practice."

The methods put forth by the researchers make it increasingly possible to use an individual's genetic profile to guide medical decisions to prevent, diagnose, and treat diseases — a priority of the National Institutes of Health. Their work was published this week in Nature Biotechnology.

"We minimize biases toward any sequencing platform or data set by comparing and integrating 11 whole human genome and three exome data sets from five sequencing platforms," says Zook.

The National Institute of Standards and Technology organized the Genome in a Bottle Consortium to make well-characterized, whole-genome reference materials available to research, commercial, and clinical laboratories.

The team addressed the challenge with the expertise of David Mittelman, an associate professor of biological sciences at the Virginia Bioinformatics Institute, who creates tools that analyze vast amounts of genomic information.

The researchers created a metric to determine the accuracy of gene variations and understand biases and sources of error in sequencing and bioinformatics methods.

Their findings are available to the public on the Genome Comparison and Analytic Testing website, known as GCAT, to enable real-time benchmarking of any DNA-sequencing method. The collaborative, free online resource compares multiple analysis tools across a variety of crowd-sourced metrics and data sets.

GCAT was built with the help of Virginia Tech Intellectual Properties and a faculty-owned, start-up company called Arpeggi, which Mittelman co-founded. Arpeggi has since been acquired by Gene by Gene Ltd, a company that offers clinical and direct-to-consumer genetic testing. Mittelman is a partner and equity holder in Gene by Gene Ltd.

Tiffany Trent | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht More than just a mechanical barrier – epithelial cells actively combat the flu virus
04.05.2016 | Helmholtz-Zentrum für Infektionsforschung

nachricht Discovery of a fundamental limit to the evolution of the genetic code
03.05.2016 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>