Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research suggests shared genetic link in psychiatric and movement disorders

27.09.2012
Fewer than 100 people in the world are known to be affected by a movement disorder called rapid-onset dystonia-parkinsonism (RDP), but its symptoms are life-changing.

Seemingly normal young people are suddenly and dramatically unable to control movement of their arms or legs and have trouble speaking or swallowing. A normal life is nearly impossible.

RDP is caused by a genetic mutation (ATP1A3) that often runs in families. Now Wake Forest Baptist Medical Center researchers believe that same genetic predisposition might also be associated with psychiatric problems, such as anxiety, mood disorders and substance abuse/dependence.

Allison Brashear, M.D., chair of neurology at Wake Forest Baptist, and the lead investigator in this $2.5 million, four-year study funded by the National Institute of Neurological Disorders and Stroke (NINDS), said this is one of the few studies to look at this rare condition that has no known treatment. "RDP often occurs suddenly after a stressful episode, such as running a marathon or childbirth," said Brashear. "Patients become severely disabled over hours to days and do not recover."

Brashear and nine other Wake Forest Baptist scientists, as well as colleagues from Harvard Medical School and Mount Sinai School of Medicine, enrolled 56 individuals for this study. Twenty-three of the RDP patients were related, three RDP patients were unrelated.

Of the 29 participants with the genetic mutation, 26 had dystonia symptoms and three were carriers, but without the motor symptoms; the remaining 27 participants without the mutation, were enrolled as the control group.

Following standard physical examination and behavioral assessment, Brashear's team found that individuals with the mutation but without the motor symptoms did not report any history of psychiatric disorder, while those with dystonia symptoms reported anxiety (48 percent; control 41percent), mood (50 percent; control 22 percent), psychotic (19 percent; control 0 percent) and substance abuse/dependence (38 percent; control 27 percent).

Researchers concluded that ATP1A3 mutations cause a wide spectrum of motor and nonmotor symptoms and that psychotic symptoms tended to develop before or simultaneous to the beginning of motor dysfunction. Further, the team believes the findings suggest psychiatric disorders may be another expression of the genetic mutation. Brashear said there are also clinical implications as a result of this study and suggested that those who deal with patients with psychosis, particularly in families with a history of dystonia-parkinsonism, consider the genetic mutation as a possible contributor to the mental illness.

Co-authors in this study were: Jared F. Cook, M.A., Deborah F. Hill, M.A, Alethea Amponsah, B.A., Beverly M. Snively, Ph.D., Laney Light, M.S., Cynthia K. Suerken, M.S., W. Vaughn McCall, M.D., and Niki Boggs, B.A., of Wake Forest Baptist; Laurie Ozelius, Ph.D., Mount Sinai School of Medicine; and Kathleen J. Sweadner, Ph.D., Harvard Medical School.

Funding for this study was provided by the National Institute for Neurological Disorders and Stroke through Grant # NINDS 5R01-NS058949-04.

Paula Faria | EurekAlert!
Further information:
http://www.wakehealth.edu

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>