Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research strategy for understanding drug resistance in leukemia

08.09.2009
UCSF researchers have developed a new approach to identify specific genes that influence how cancer cells respond to drugs and how they become resistant.

This strategy, which involves producing diverse genetic mutations that result in leukemia and associating specific mutations with treatment outcomes, will enable researchers to better understand how drug resistance occurs in leukemia and other cancers, and has important long-term implications for the development of more effective therapies.

Findings are reported in the Advance Online Publication of the journal “Nature” and are available at http://www.nature.com/nature/journal/vaop/ncurrent/index.html.

“In trying to understand why certain cancers respond to drugs while certain other cancers fail to respond, we found that a single gene can be the culprit for drug resistance,” said Kevin Shannon, MD, senior author of the paper and a pediatric cancer specialist at UCSF Children’s Hospital. “The subtlety of what makes a cancer cell become resistant to a drug is truly remarkable.”

“When treating patients for cancer, clinical specialists usually only have one or two chances to choose the right drug before it is too late. This makes it incredibly important to understand drug resistance so that we can prioritize therapeutic options,” said Jennifer Lauchle, MD, the study’s lead author and a pediatric blood and cancer specialist at UCSF Children’s Hospital.

In the initial stages of the study, the researchers used a strain of mice that developed acute myelogenous leukemia, or AML, to assess the effectiveness of an experimental cancer drug called a MEK inhibitor. AML is an aggressive cancer that affects both children and adults and causes abnormal white blood cells to grow rapidly and accumulate in the bone marrow, thereby interfering with the production of normal blood cells.

The researchers created the mouse model of AML through two key steps. First they utilized a strain of mice that had a single gene mutation closely resembling the mutation found in leukemia and some other cancers. Then they introduced an infectious particle called a retrovirus, which produces additional mutations that work together and result in AML. The retrovirus also “tags” these new genetic mutations, which allows researchers to identify them later on. These steps resulted in a model of AML that, like human AML and other advanced cancers, has several genetic mutations that interact with one another.

To assess the effectiveness of the MEK inhibitor, the researchers compared a group of mice with AML that was treated with the drug to a group that was left untreated and found that the drug increased survival time threefold. However, all of the leukemia cells that initially responded to the drug later relapsed, which is similar to what happens in many human patients.

“This shows that even if you make what seems to be a really good drug, resistance is a major problem that must be overcome,” said Shannon, who is also a leader of the hematopoietic malignancies research program at UCSF’s Helen Diller Family Comprehensive Cancer Center.

In the next phase of the study, the research team set out to uncover the genes that triggered drug resistance by comparing cells from the original drug responsive AML to those of the relapsed AML. Because AML in the mouse model had been created with a retrovirus, the new mutations that caused the leukemia to relapse could be pinpointed through forward genetic analyses. These analyses identified two new single gene mutations that rendered the MEK inhibitor ineffective and brought about the relapsed AML.

According to the researchers, this same method can be used to study other types of cancer in order to identify additional genes responsible for drug resistance. “The hope is that this new strategy will enable us to identify more effective therapies and to find ways to anticipate and overcome drug resistance,” Shannon added.

Additional co-authors from UCSF include Doris Kim, Doan Le, MD, Michael Crone, Kimberly Krisman, Kegan Warner, Jeannette Bonifas, Qing Li, MD, Kristen Coakley, Ernesto Diaz-Flores, PhD, Matthew Gorman, MD, Mary Tran, Scott Kogan, MD, and Jeroen Roose, PhD. Co-authors from other institutions are Keiko Akagi, PhD, and Linda Wolff, PhD, of the National Cancer Institute; Sally Przybranowski, MS, and Judith Sebolt-Leopold, PhD, of Pfizer Global Research and Development; Neal Copeland, PhD, and Nancy Jenkins, PhD, of the Institute of Molecular and Cell Biology; and Luis Parada, PhD, of the University of Texas Southwestern.

The research was supported by grants from the National Institutes of Health, the Leukemia and Lymphoma Society, the US Army Neurofibromatosis Research Program, the Ronald McDonald House Charities of Southern California/Couples Against Leukemia, the Jeffrey and Karen Peterson Family Foundation, and the Frank A. Campini Foundation.

One of the nation’s top children’s hospitals, UCSF Children’s Hospital creates an environment where children and their families find compassionate care at the healing edge of scientific discovery, with more than 150 experts in 50 medical specialties serving patients throughout Northern California and beyond. The hospital admits about 5,000 children each year, including 2,000 babies born in the hospital.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Kate Schoen | EurekAlert!
Further information:
http://www.ucsf.edu

Further reports about: AML Cancer MEK UCSF blood cell gene mutation genetic mutation leukemia mouse model white blood cell

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>