Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research could stop tumour cells from spreading

03.04.2012
Researchers from the Department of Chemistry and Molecular Biology at the University of Gothenburg have managed for the first time to obtain detailed information about the role of the protein metastasin in the spread of tumour cells. Published recently in the renowned Proceedings of the National Academy of Sciences (PNAS), the study paves the way for the development of new drugs.
Metastasin is a protein with a key role in the spread of tumour cells.
Previous research has shown that it is activated through the binding of calcium ions and then binds to and modulates other proteins.

Increases the spread of tumour cells
One of metastasin’s binding partners is a motor protein called non-muscle myosin. Motor proteins are the driving force behind cell mobility. By binding to this protein, metastasin can increase the spread of tumour cells, acting as a kind of gas pedal for the cancer engine.

“Using a method called X-ray crystallography, we have managed for the first time to obtain detailed information on how metastasin binds to a motor protein, a process that facilitates the spread of tumour cells,” explains researcher Gergely Katona.

Detailed picture
It has been possible to image metastasin and calcium-ion-bound metastasin using X-ray crystallography before, but the researchers at the University of Gothenburg are the first to have imaged the structure of calcium-ion-activated metastasin with an attached non-muscle myosin fragment.

“This has given us information about regions of both metastasin and the motor protein that are crucial for metastasin’s ability to bind to the motor protein. This is important to know for drugs to be developed that block these specific regions and so prevent this binding.”

The image of the two molecules gives us a better understanding of how metastasin binds to the motor protein, so increasing cell mobility and the spread of tumour cells. This understanding in turn paves the way for the development of new drugs to prevent this harmful interaction between molecules and so stop tumour cells from spreading.

“The metastasin and the motor protein can be imaged as a snapshot, but the next stage is to create a kind of video to see how the molecules move when binding to one another,” explains Katona.

Gergely Katona is a researcher at the Department of Chemistry and Molecular Biology at the University of Gothenburg.

Bibliographic data:
Journal: PNAS - Proceedings of the National Academy of Sciences
Title: Crystal structure of the S100A4–nonmuscle myosin IIA tail fragment complex reveals an asymmetric target binding mechanism
Authors: Bence Kiss, Annette Duelli, László Radnai, Katalin A. Kékesi, Gergely Katona, and László Nyitray

For more information, please contact: Gergely Katona
Telephone: +46 (0)31 786 3959
E-mail: gergely.katona@chem.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se
http://www.science.gu.se/aktuellt/nyheter/Nyheter+Detalj//-ny-forskning-kan-forhindra-spridning-av-cancertumorceller.cid1071942

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>