Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research could stop tumour cells from spreading

03.04.2012
Researchers from the Department of Chemistry and Molecular Biology at the University of Gothenburg have managed for the first time to obtain detailed information about the role of the protein metastasin in the spread of tumour cells. Published recently in the renowned Proceedings of the National Academy of Sciences (PNAS), the study paves the way for the development of new drugs.
Metastasin is a protein with a key role in the spread of tumour cells.
Previous research has shown that it is activated through the binding of calcium ions and then binds to and modulates other proteins.

Increases the spread of tumour cells
One of metastasin’s binding partners is a motor protein called non-muscle myosin. Motor proteins are the driving force behind cell mobility. By binding to this protein, metastasin can increase the spread of tumour cells, acting as a kind of gas pedal for the cancer engine.

“Using a method called X-ray crystallography, we have managed for the first time to obtain detailed information on how metastasin binds to a motor protein, a process that facilitates the spread of tumour cells,” explains researcher Gergely Katona.

Detailed picture
It has been possible to image metastasin and calcium-ion-bound metastasin using X-ray crystallography before, but the researchers at the University of Gothenburg are the first to have imaged the structure of calcium-ion-activated metastasin with an attached non-muscle myosin fragment.

“This has given us information about regions of both metastasin and the motor protein that are crucial for metastasin’s ability to bind to the motor protein. This is important to know for drugs to be developed that block these specific regions and so prevent this binding.”

The image of the two molecules gives us a better understanding of how metastasin binds to the motor protein, so increasing cell mobility and the spread of tumour cells. This understanding in turn paves the way for the development of new drugs to prevent this harmful interaction between molecules and so stop tumour cells from spreading.

“The metastasin and the motor protein can be imaged as a snapshot, but the next stage is to create a kind of video to see how the molecules move when binding to one another,” explains Katona.

Gergely Katona is a researcher at the Department of Chemistry and Molecular Biology at the University of Gothenburg.

Bibliographic data:
Journal: PNAS - Proceedings of the National Academy of Sciences
Title: Crystal structure of the S100A4–nonmuscle myosin IIA tail fragment complex reveals an asymmetric target binding mechanism
Authors: Bence Kiss, Annette Duelli, László Radnai, Katalin A. Kékesi, Gergely Katona, and László Nyitray

For more information, please contact: Gergely Katona
Telephone: +46 (0)31 786 3959
E-mail: gergely.katona@chem.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se
http://www.science.gu.se/aktuellt/nyheter/Nyheter+Detalj//-ny-forskning-kan-forhindra-spridning-av-cancertumorceller.cid1071942

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>