Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Research from SRI Points to Biomarker that Could Track Huntington’s Disease Progression

09.07.2013
A hallmark of neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's is that by the time symptoms appear, significant brain damage has already occurred—and currently there are no treatments that can reverse it.

A team of SRI International researchers has demonstrated that measurements of electrical activity in the brains of mouse models of Huntington's disease could indicate the presence of disease before the onset of major symptoms.

The findings, “Longitudinal Analysis of the Electroencephalogram and Sleep Phenotype in the R6/2 Mouse Model of Huntington's Disease,” are published in the July 2013 issue of the neurology journal Brain, published by Oxford University Press.

SRI researchers led by Stephen Morairty, Ph.D., a director in the Center for Neuroscience in SRI Biosciences, and Simon Fisher, Ph.D., a postdoctoral fellow at SRI, used electroencephalography (EEG), a noninvasive method commonly used in humans, to measure changes in neuronal electrical activity in a mouse model of Huntington's disease. Identification of significant changes in the EEG prior to the onset of symptoms would add to evidence that the EEG can be used to identify biomarkers to screen for the presence of a neurodegenerative disease. Further research on such potential biomarkers might one day enable the tracking of disease progression in clinical trials and could facilitate drug development.

“EEG signals are composed of different frequency bands such as delta, theta and gamma, much as light is composed of different frequencies that result in the colors we call red, green and blue,” explained Thomas Kilduff, Ph.D., senior director, Center for Neuroscience, SRI Biosciences. “Our research identified abnormalities in all three of these bands in Huntington's disease mice. Importantly, the activity in the theta and gamma bands slowed as the disease progressed, indicating that we may be tracking the underlying disease process.”

EEG has shown promise as an indicator of underlying brain dysfunction in neurodegenerative diseases, which otherwise occurs surreptitiously until symptoms appear. Until now, most investigations of EEG in patients with neurodegenerative diseases and in animal models of neurodegenerative diseases have shown significant changes in EEG patterns only after disease symptoms occurred.

“Our breakthrough is that we have found an EEG signature that appears to be a biomarker for the presence of disease in this mouse model of Huntington's disease that can identify early changes in the brain prior to the onset of behavioral symptoms,” said Morairty, the paper's senior author. “While the current study focused on Huntington's disease, many neurodegenerative diseases produce changes in the EEG that are associated with the degenerative process. This is the first step in being able to use the EEG to predict both the presence and progression of neurodegenerative diseases.”

Although previous studies have shown there are distinct and extensive changes in EEG patterns in Alzheimer's and Huntington's disease patients, researchers are looking for changes that may occur decades before disease onset.

Huntington's disease is an inherited disorder that causes certain nerve cells in the brain to die, resulting in motor dysfunction, cognitive decline and psychiatric symptoms. It is the only major neurodegenerative disease where the cause is known with certainty: a genetic mutation that produces a change in a protein that is toxic to neurons.

About SRI Biosciences

SRI Biosciences carries out basic research, drug discovery, and drug development, and provides contract (CRO) services. SRI has all of the resources necessary to take R&D from initial discoveries to human clinical trials. SRI's product pipeline has yielded marketed drugs, therapeutics currently in clinical trials, and additional programs in earlier stages. In its CRO business, SRI has helped government and commercial clients and partners advance many drugs into patient testing. SRI is also working to create the next generation of technologies in areas such as diagnostics, drug delivery, medical devices, and systems biology.

Dina Basin | EurekAlert!
Further information:
http://www.sri.com

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>