Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research shows how disease-causing parasite gets around human innate immunity

31.08.2010
Trypanosomes are parasites responsible for many human and animal diseases, primarily in tropical climates. One disease these parasites cause, African sleeping sickness, results from the bite of infected tsetse flies, putting over 60 million Africans at risk in 36 sub-Saharan countries. The recent 1998-2001 sleeping sickness epidemics in South Sudan, Angola, Democratic Republic of Congo and Uganda killed tens of thousands of people and resulted in over a half million infected individuals.

A team of researchers at the University of Georgia and Glasgow University has now shown, for the first time, just how one species of these parasites evades the human innate defenses. The finding could open the way for new classes of drugs and more in-depth studies about how parasites manage to kill so many and cost governments billions of dollars to fight.

"We believe this research represents a paradigm shift and causes us to think more broadly about how pathogens avoid host defense mechanisms," said Stephen Hajduk, professor and head of the department of biochemistry and molecular biology at UGA and one of the leaders of the research. "It turns out that African trypanosomes have evolved a diversity of ways to avoid human innate and acquired immune systems."

The research, published today in the Proceedings of the National Academy of Sciences, was a joint effort between UGA and a group led by Annette Macleod at the University of Glasgow in Scotland. Other authors of the paper include Rudo Kieft, a research professional in Hajduk's lab at UGA; Paul Capewell and Nicola Veitch in the Macleod lab in Wellcome Center for Molecular Parasitology in Glasgow; and Michael Turner of the Biomedical Research Center at the University of Glasgow. The department of biochemistry and molecular biology at UGA is part of the Franklin College of Arts and Sciences. Hajduk also is a member of the Center for Tropical and Emerging Global Diseases at UGA.

The need for a clearer understanding of how these parasites evade human immune systems is at the heart of a serious public health problem, Hajduk said. During the recent epidemics of African sleeping sickness, as many as half the occupants in some African villages were infected with trypanosomes. The geographical isolation of these villages and ongoing civil wars contributed to what many believe were the worst epidemics of sleeping sickness in five decades.

This led to the realization that many of the existing therapies now available to fight African sleeping sickness are often ineffective and have extreme toxicity, frequently causing death. Additionally, there is increasing evidence that while new therapeutics may cure the disease, long-lasting neurological damage can be caused by infection.

The World Health Organization reports that the recent introduction of aggressive population screening in rural areas and distribution of more effective drugs has dramatically reduced the number of deaths, however.

Several species of African trypanosomes infect non-primate mammals and cause important veterinary disease yet are unable to infect humans. The trypanosomes that cause human disease, Trypanosoma brucei gambiense and T. b. rhodensiense, have evolved mechanisms to avoid the native human defense molecules in the circulatory system that kill the parasites that cause animal disease.

Two of the major challenges faced by scientists studying human sleeping sickness have been the identification of the naturally occurring human defense molecules that are active against the trypanosomes causing animal disease, and the identification of the strategies used by the human sleeping sickness parasites to avoid the action of these molecules.

Human innate immunity against most African trypanosomes is mediated by a subclass of HDL (high density lipoprotein, which people know from blood tests as "good cholesterol") called trypanosome lytic factor-1, or TLF-1. This minor subclass of human HDL further contains two proteins, apolipoprotein L-1 and haptoglobin-related protein, which are only found in primates. These proteins work together, in the lipid environment of the HDL particle, as a specific and highly active toxin against the trypanosomes that infect non-primate mammals. Despite its activity against some African trypanosomes, the toxin is completely nontoxic to the human sleeping sickness parasites.

The parasite that causes fast-onset, acute sleeping sickness in humans, T. b. rhodensiense, is able to cause disease because it has evolved an inhibitor of TLF-1 called Serum Resistance Associated (SRA) protein. Another species, T. b. gambiense, causes slow onset, chronic sleeping sickness and is responsible for over 95 percent of the human deaths caused by these parasites. Until the just-published research by Hajduk, Macleod and their colleagues, nothing was known about TLF-1 resistance in T. b. gambiense. Hajduk and Macleod report, for the first time, that T. b. gambiense resistance to TLF-1 is caused by a marked reduction of TLF-1 uptake by the parasite.

So how is this happening?

To survive in the bloodstream of humans, these parasites have apparently evolved mutations in the gene encoding a surface protein receptor. These mutations result in a receptor with decreased TLF-1 binding, leading to reduced uptake and thus allow the parasites to avoid the toxicity of TLF-1.

"Humans have evolved TLF-1 as a highly specific toxin against African trypanosomes by tricking the parasite into taking up this HDL because it resembles a nutrient the parasite needs for survival," said Hajduk, "but T. b. gambiense has evolved a counter measure to these human 'Trojan horses' simply by barring the door and not allowing TLF-1 to enter the cell, effectively blocking human innate immunity and leading to infection and ultimately disease."

The parasite may pay a price for blocking the uptake of a nutrient, but still the strategy works and the parasite can infect humans. Now that researchers know how the parasite survives, this may provide an intervention target that could keep the parasites from evading the human defense system. The result could be a newly strengthened innate defense system that halts the parasites in their paths.

The research was supported by grants from the National Institutes of Health and the Burroughs-Wellcome Fund.

Stephen Hajduk | EurekAlert!
Further information:
http://www.uga.edu

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Climate change: In their old age, trees still accumulate large quantities of carbon

17.08.2017 | Earth Sciences

Modern genetic sequencing tools give clearer picture of how corals are related

17.08.2017 | Life Sciences

Superconductivity research reveals potential new state of matter

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>