Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research shows that coldness triggers northward flight in migrating monarch butterflies

22.02.2013
Findings suggest that the monarch migration cycle may be vulnerable to global climate change

Each fall millions of monarch butterflies from across the eastern United States begin a southward migration in order to escape the frigid temperatures of their northern boundaries, traveling up to 2,000 miles to an overwintering site in a specific grove of fir trees in central Mexico.

Surprisingly, a new study by scientists at the University of Massachusetts Medical School published in Current Biology, suggests that exposure to coldness found in the microenvironment of the monarch's overwintering site triggers their return north every spring. Without this cold exposure, the monarch butterfly would continue flying south.

These findings help explain why monarch butterflies transverse such long distances to overwinter at a relatively small region roughly 300 square miles in size atop frost-covered mountains. Upon arrival in November, the monarchs begin to congregate in tightly packed clusters in a few isolated locations in the high altitude coniferous forests. Both the clustering and the forest cover provide a microenvironment that protects against environmental extremes – the temperature remains low enough to keep metabolic demands low but not cold enough to cause freezing – and ultimately triggers their return north in the spring.

It also suggests that these delicate creatures may be influenced by and vulnerable to global climate changes, say researchers. "The temperature of the microenvironment at the overwintering sites is a critical component for the completion of the migration cycle," said Steven M. Reppert, MD, professor of neurobiology and senior author of the study. "Without this thermal stimulus, the annual migration cycle would be broken, and we could have lost one of the most intriguing biological phenomena in the world."

Though accomplished in a single calendar year, it takes at least three generations of monarch butterflies to complete a single migratory journey. The monarchs that return to Mexico each year have never been to the overwintering sites before, and have no relatives to follow on their way. The biological and genetic mechanisms underlying their incredible journey have intrigued scientists for generations.

Earlier work by Reppert's group found that monarchs rely on a time-compensated sun compass to direct their navigation south. Their new research shows that those same systems are responsible for guiding them north each spring.

This alone, however, didn't explain what was triggering the change in direction each spring. To find out, Patrick Guerra, a postdoctoral fellow in Reppert's lab at UMass Medical School and first author on the Current Biology study, collected wild monarchs at the start of their migration in the fall and subjected the monarchs to the same temperature and light levels they would experience in their overwintering ground in Mexico. When the monarchs were studied in a flight simulator 24 days later, instead of resuming their southward journey, the butterflies headed north.

Further study confirmed that changes in temperature alone altered the flight direction of the monarch butterflies. Those subjected to cold oriented north; monarchs who were protected from the cold would continue to orient south.

These findings, coupled with newly available genetic and genomic tools for monarchs, will lead to new insights about the biological processes underlying their remarkable migratory journey.

"The more we learn, the clearer it becomes that the monarch migration is a uniquely fragile biological process," said Reppert. "Understanding how it works means we'll be better able to protect this iconic system from external threats such as global warming."

About the University of Massachusetts Medical School

The University of Massachusetts Medical School, one of the fastest growing academic health centers in the country, has built a reputation as a world-class research institution, consistently producing noteworthy advances in clinical and basic research. The Medical School attracts more than $250 million in research funding annually, 80 percent of which comes from federal funding sources. The mission of the Medical School is to advance the health and well-being of the people of the commonwealth and the world through pioneering education, research, public service and health care delivery with its clinical partner, UMass Memorial Health Care. For more information, visit www.umassmed.edu.

Jim Fessenden | EurekAlert!
Further information:
http://www.umassmed.edu

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>