Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Shows Cell’s Inactive State is Critical for Effectiveness of Cancer Treatment

13.01.2009
A new study sheds light on a little understood biological process called quiescence, which enables blood-forming stem cells to exist in a dormant or inactive state in which they are not growing or dividing.

According to the study’s findings, researchers identified the genetic pathway used to maintain a cell’s quiescence, a state that allows bone marrow cells to escape the lethal effects of standard cancer treatments.

Researchers at Memorial Sloan-Kettering Cancer Center (MSKCC) found elevated levels of the tumor suppressor protein p53 in hematopoietic stem cells (HSCs) – immature cells in the bone marrow that have the capacity to differentiate into all types of mature blood cells. They showed that when chemotherapy or radiation is delivered to a cell that lacks both p53 and a gene called MEF, the cell not only becomes less quiescent, but also becomes more susceptible to being killed. These findings are published in the January 9, 2009, issue of Cell Stem Cell.

“This is the first time that anyone has established that p53 has a role in defining a cell’s state of quiescence. Furthermore, it is surprising that some cells that lose p53 can actually be killed more readily than those that have p53 intact,” said the study’s senior author, Stephen Nimer, MD, Chief of the Hematology Service and Member of the Molecular Pharmacology and Chemistry Program at MSKCC. “Our findings have important implications for developing therapeutic strategies that could eliminate quiescent cancer stem cells.”

The study builds on previous research in which Dr. Nimer and colleagues first identified the MEF gene and showed its ability to control the state of quiescence of HSCs as well as its critical role in determining the sensitivity of normal bone marrow cells to chemotherapy and radiation. They have now identified p53 as the pathway that MEF utilizes to maintain this enhanced quiescence.

It is known that when a cell experiences DNA damage as a result of cancer treatment, p53 plays a critical role in guarding the genomic integrity of the cell by either triggering it to die or by causing cells to stop growing so they can repair their DNA successfully. However, p53 has additional functions during the process of blood cell formation in the body – a process called hematopoiesis.

In the current study, investigators set out to determine whether the increased amount of p53 and enhanced expression of p53 target genes might contribute to the quiescence of cells and their ability to resist chemotherapy. They examined the function of p53 during hematopoiesis and found an important interdependency between p53 and its target gene, MEF, on HSC quiescence.

“Our findings suggest that by targeting those specific genes that control quiescence in cancer cells, we may enhance the anticancer effects of chemotherapy and radiotherapy, thereby promoting their effectiveness,” said Dr. Nimer.

In addition, researchers identified two new targets of the p53 protein – Necdin and Gfi-1 – tumor growth suppressor genes that also regulate quiescence.

Researchers lowered the expression of Necdin and Gfi-1 in hematopoietic stem cells lacking MEF and found a significant reduction in the quiescence of those cells. The results suggest that these p53 target genes are functionally responsible for the enhanced quiescence of HSCs in which MEF has been eliminated.

The study was supported by the Wally Yonamine Fund for Leukemia Research, and grants from the National Institutes of Health and the Marshall A. Lichtman Specialized Center of Research (SCOR) program of the Leukemia & Lymphoma Society.

The following investigators contributed to this research: Yan Liu, PhD, Shannon E. Elf, MS, Yasuhiko Miyata, MD, PhD, Goro Sashida, MD, PhD, Silvana Di Giandomenico, BS, Jennifer M. Lee, BS, Anthony Deblasio, MS, and Silvia Menendez, MS, of the Molecular Phamacology and Chemistry Program; Jack Antipin, PhD, and Boris Reva, PhD, of the Computational Biology Program; and Andrew Koff, PhD, of the Molecular Biology Program.

Memorial Sloan-Kettering Cancer Center is the world’s oldest and largest institution devoted to prevention, patient care, research, and education in cancer. Our scientists and clinicians generate innovative approaches to better understand, diagnose, and treat cancer. Our specialists are leaders in biomedical research and in translating the latest research to advance the standard of cancer care worldwide.

Esther Napolitano | Newswise Science News
Further information:
http://www.mskcc.org

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>