Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research sheds light on workings of anti-cancer drug

27.11.2009
Crystal structure shows how drug disables harmful copper in cells

The copper sequestering drug tetrathiomolybdate (TM) has been shown in studies to be effective in the treatment of Wilson disease, a disease caused by an overload of copper, and certain metastatic cancers. That much is known. Very little, however, is known about how the drug works at the molecular level.

A new study led by Northwestern University researchers now has provided an invaluable clue: the three-dimensional structure of TM bound to copper-loaded metallochaperones. The drug sequesters the chaperone and its bound copper, preventing both from carrying out their normal functions in the cell. For patients with Wilson disease and certain cancers whose initial growth is helped by copper-dependent angiogenesis, this is very promising.

This knowledge opens the door to the development of new classes of pharmaceutical agents based on metal trafficking pathways, as well as the further development of more efficient TM-based drugs. The study will be published in Science Express Nov. 26.

"Essential metals are at the center of many emerging problems in health, medicine and the environment, and this work opens the door to new biological experiments," said Thomas V. O'Halloran, the study's senior author and the Charles E. and Emma H. Morrison Professor of Chemistry in the Weinberg College of Arts and Sciences at Northwestern. He and geneticist Valeria Culotta of Johns Hopkins University discovered the first copper chaperone function in 1997.

O'Halloran and his research team studied the copper chaperone protein Atx1, which provides a good model of copper metabolism in animal cells. "We wondered what the drug tetrathiomolybdate did to copper chaperones -- proteins charged with safely ferrying copper within the cell -- and what we found was most amazing," O'Halloran said. "The drug brings three copper chaperones into close quarters, weaving them together through an intricate metal-sulfur cluster in a manner that essentially shuts down the copper ferrying system."

The nest-shaped structure of the metal-sulfur cluster discovered by the researchers was completely unanticipated.

"When we mixed TM together with copper chaperone proteins in a test tube, the color of the solution changed from light orange to deep purple," said Hamsell M. Alvarez, the paper's first author and a former doctoral student in O'Halloran's lab, now with Merck & Co., Inc. "The sulfur atoms in the tetrathiomolybdate bound to the copper atoms to form an open cluster that bridged the chaperone proteins. In this manner, three copper proteins were jammed onto one thiomolybdate."

Alfonso Mondragón, professor of biochemistry, molecular biology and cell biology in the Weinberg College of Arts and Sciences, and graduate student Yi Xue, both co-authors of the paper, solved the three-dimensional crystal structure using protein X-ray crystallography. This is the first example of a copper-sulfide-molybdenum metal cluster protein.

Based on the structure and additional experiments, the scientists propose that the drug inhibits the traffic of copper within the cell because of its ability to sequester copper chaperones and their cargo in clusters, rendering the copper inactive.

"We conclude that the biological activity of tetrathiomolybdate does not arise from a simple copper sequestering action but through a disruption of key protein-protein interactions important in human copper metabolism," Alvarez said.

Inorganic elements, such as copper, zinc and iron, are vital to the healthy functioning of all cells in living organisms. But they are high-maintenance nutrients, and too much can be toxic, as is the case in Wilson disease, a genetic disorder that prevents the body from getting rid of extra copper and leads to liver and neurological problems.

Copper also is an important cofactor for tumor angiogenesis, the process of growing new blood vessels to feed the tumor. Researchers believe this is why tetrathiomolybdate has shown promise as an anti-cancer drug.

The chain of discovery that led to the use of tetrathiomolybdate as a therapeutic agent began in the 1930s when cows grazing in certain types of pastures in England developed neurological problems. This trouble was then linked to other neurological problems with sheep grazing on certain soils in Australia. It was found that molybdate, a non-toxic compound present in the grass of these pastures, when consumed in excessive amounts by the ruminants, led to copper deficiencies and neurological problems in the animals.

As copper overload disorders such as Wilson disease were discovered in humans, physicians used molybdenum chemistry focusing on tetrathiomolybdate to lower copper levels in the body. (Tetrathiomolybdate is an inorganic small molecule first synthesized by J. J. Berzelius in 1826.)

Tetrathiomolybdate is the active pharmaceutical agent in a well-tolerated drug that has shown activity for the treatment of Wilson disease and now is in phase II clinical trials as an anti-cancer drug.

TM also has been examined in recent studies where copper dysregulation is implicated in the pathogenesis of neurodegenerative diseases such as familial amyotrophic lateral sclerosis (ALS), Parkinson's disease, multiple sclerosis and Alzheimer's disease as well as primary pulmonary hypertension and left ventricular hypertrophy associated with type II diabetes. Copper modulating agents including TM have been shown to be active in animal models of these diseases providing a rationale for advancing tetrathiomolybdates into clinical evaluation in these areas.

O'Halloran also is director of Northwestern's Chemistry of Life Processes Institute and serves as associate director for basic science research at the Robert H. Lurie Comprehensive Cancer Center of Northwestern University. Mondragón is a member and Alvarez was a Malkin Fellow of the Lurie Cancer Center.

The Science paper is titled "Tetrathiomolybdate Inhibits Copper Trafficking Proteins Through Metal Cluster Formation." In addition to O'Halloran, Alvarez, Mondragón and Xue, other authors of the paper are Chandler D. Robinson, Mónica A. Canalizo-Hernández and Rebecca G. Marvin from Northwestern, and Rebekah A. Kelly and James E. Penner-Hahn from the University of Michigan.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Supercomputing helps researchers understand Earth's interior

23.05.2017 | Earth Sciences

Study identifies RNA molecule that shields breast cancer stem cells from immune system

23.05.2017 | Life Sciences

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>