Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research sheds light on how the body regulates fundamental neuro-hormone

11.02.2014
New research has revealed a previously unknown mechanism in the body which regulates a hormone that is crucial for motivation, stress responses and control of blood pressure, pain and appetite. The breakthrough could be used to design drugs to help fight health problems connected with these functions in the future.

Researchers at the University of Bristol and University College London found that lactate – essentially lactic acid – causes cells in the brain to release more noradrenaline (norepinephrine in US English), a hormone and neurotransmitter which is fundamental for brain function. Without it people can hardly wake up or focus on anything.

Production of lactate can be triggered by muscle use, which reinforces the connection between exercise and positive mental wellbeing.

Lactate was first discovered in sour milk by Swedish chemist, Carl Wilhelm Scheele in 1780. It is produced naturally by the body, for example when muscles are at work. In the brain, it has always been regarded as an energy source which can be delivered to neurones as fuel to keep them working when brain activity increases.

This research, published today [11 February] in Nature Communications, identifies a secondary function for lactate as a signal between brain cells. It implies that there is an as yet unknown receptor for lactate in the brain which must be present on noradrenaline cells to make them sensitive to lactate.

Professor Sergey Kasparov, from Bristol University's School of Physiology and Pharmacology, said: "Our findings suggest that lactate has more than one incarnation - in addition to its role as an energy source, it is also a signal to neurones to release more noradrenaline."

Dr Anja Teschemacher, also from the University of Bristol, added: "The next big task is to identify the receptor which mediates this effect because this will help to design drugs to block or stimulate this response. If we can regulate the release of noradrenaline – which is absolutely fundamental for brain function - then this could have important implications for the treatment of major health problems such as stress, blood pressure, pain and depression."

Astrocytes, small non-neuronal star-shaped cells in the brain and spinal cord, are the principle source of brain lactate. The discovery that astrocytes communicate directly with neurones opens up a whole new area of pharmacology which has been little explored.

The research was funded by the British Heart Foundation (BHF), the Medical Research Council (MRC), The Wellcome Trust and the Biotechnology and Biological Sciences Research Council (BBSRC).

Paper:

'Lactate-mediated glia-neuronal signaling in the mammalian brain' by F. Tang, S. Lane, A. Korsak, J.F.R. Paton, A.V. Gourine, S. Kasparov & A.G. Teschemacher, in Nature Communications DOI: 10.1038/ncomms4284

Philippa Walker | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Life Sciences:

nachricht MACC1 Gene Is an Independent Prognostic Biomarker for Survival in Klatskin Tumor Patients
31.08.2015 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Fish Oil-Diet Benefits May be Mediated by Gut Microbes
28.08.2015 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Siemens sells 18 industrial gas turbines to Thailand

01.09.2015 | Press release

An engineered surface unsticks sticky water droplets

01.09.2015 | Materials Sciences

New material science research may advance tech tools

01.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>