Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research sheds light on how the body regulates fundamental neuro-hormone

11.02.2014
New research has revealed a previously unknown mechanism in the body which regulates a hormone that is crucial for motivation, stress responses and control of blood pressure, pain and appetite. The breakthrough could be used to design drugs to help fight health problems connected with these functions in the future.

Researchers at the University of Bristol and University College London found that lactate – essentially lactic acid – causes cells in the brain to release more noradrenaline (norepinephrine in US English), a hormone and neurotransmitter which is fundamental for brain function. Without it people can hardly wake up or focus on anything.

Production of lactate can be triggered by muscle use, which reinforces the connection between exercise and positive mental wellbeing.

Lactate was first discovered in sour milk by Swedish chemist, Carl Wilhelm Scheele in 1780. It is produced naturally by the body, for example when muscles are at work. In the brain, it has always been regarded as an energy source which can be delivered to neurones as fuel to keep them working when brain activity increases.

This research, published today [11 February] in Nature Communications, identifies a secondary function for lactate as a signal between brain cells. It implies that there is an as yet unknown receptor for lactate in the brain which must be present on noradrenaline cells to make them sensitive to lactate.

Professor Sergey Kasparov, from Bristol University's School of Physiology and Pharmacology, said: "Our findings suggest that lactate has more than one incarnation - in addition to its role as an energy source, it is also a signal to neurones to release more noradrenaline."

Dr Anja Teschemacher, also from the University of Bristol, added: "The next big task is to identify the receptor which mediates this effect because this will help to design drugs to block or stimulate this response. If we can regulate the release of noradrenaline – which is absolutely fundamental for brain function - then this could have important implications for the treatment of major health problems such as stress, blood pressure, pain and depression."

Astrocytes, small non-neuronal star-shaped cells in the brain and spinal cord, are the principle source of brain lactate. The discovery that astrocytes communicate directly with neurones opens up a whole new area of pharmacology which has been little explored.

The research was funded by the British Heart Foundation (BHF), the Medical Research Council (MRC), The Wellcome Trust and the Biotechnology and Biological Sciences Research Council (BBSRC).

Paper:

'Lactate-mediated glia-neuronal signaling in the mammalian brain' by F. Tang, S. Lane, A. Korsak, J.F.R. Paton, A.V. Gourine, S. Kasparov & A.G. Teschemacher, in Nature Communications DOI: 10.1038/ncomms4284

Philippa Walker | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>